Suppr超能文献

肾脏病学中的交叉滞后分析。

Cross-lagged analysis in nephrology.

作者信息

Zoccali Carmine, Tripepi Giovanni, D'Arrigo Graziella

机构信息

Renal Research Institute, New York, USA.

Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.

出版信息

J Nephrol. 2025 Jun 13. doi: 10.1007/s40620-025-02319-0.

Abstract

Cross-lagged analysis is a statistical method employed to examine directional relationships between variables over time, making it especially valuable for addressing causality challenges in clinical research. This method is essential for comprehending complex bidirectional relationships, such as stress and immunity, dietary habits and metabolic conditions, or medication adherence and health outcomes. By analyzing longitudinal data, cross-lagged analysis establishes temporal precedence, tests reciprocal influences, and controls for confounding variables, thereby enhancing causal inferences. In nephrology, this approach can be beneficial for studying the interaction between acute kidney injury (AKI) and chronic kidney disease (CKD), clarifying whether AKI episodes accelerate CKD progression or if pre-existing CKD increases susceptibility to AKI. It also illuminates the relationship between CKD and cardiovascular diseases, investigating whether CKD exacerbates heart failure or vice versa while considering shared risk factors like hypertension and diabetes. Furthermore, cross-lagged analysis can elucidate the kidney-brain connection by examining whether CKD leads to cognitive decline through mechanisms such as uremic toxin accumulation or if neurological dysfunction worsens kidney outcomes through sympathetic overactivation. Cross-lagged analysis accommodates latent variables and measurement errors, allowing researchers to explore how variables interact over time. This method provides a strong framework for understanding dynamic relationships in nephrology, offering critical insights to guide interventions and advance knowledge of disease progression mechanisms.

摘要

交叉滞后分析是一种用于检验变量之间随时间变化的方向性关系的统计方法,这使其在应对临床研究中的因果关系挑战方面具有特别重要的价值。该方法对于理解复杂的双向关系至关重要,例如压力与免疫力、饮食习惯与代谢状况,或药物依从性与健康结果之间的关系。通过分析纵向数据,交叉滞后分析确定时间先后顺序,检验相互影响,并控制混杂变量,从而增强因果推断。在肾脏病学中,这种方法有助于研究急性肾损伤(AKI)与慢性肾脏病(CKD)之间的相互作用,阐明AKI发作是否会加速CKD进展,或者已有的CKD是否会增加发生AKI的易感性。它还能阐明CKD与心血管疾病之间的关系,研究CKD是否会加重心力衰竭,反之亦然,同时考虑高血压和糖尿病等共同的风险因素。此外,交叉滞后分析可以通过研究CKD是否通过尿毒症毒素积累等机制导致认知功能下降,或者神经功能障碍是否通过交感神经过度激活使肾脏结局恶化,来阐明肾-脑联系。交叉滞后分析能够处理潜在变量和测量误差,使研究人员能够探索变量随时间的相互作用方式。这种方法为理解肾脏病学中的动态关系提供了一个强大的框架,为指导干预措施和推进对疾病进展机制的认识提供了关键见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验