Khuu Thien, Takematsu Kana, Dawlaty Jahan
University of Southern California, Los Angeles, California 90007, United States.
Bowdoin College, Brunswick, Maine 04011, United States.
J Phys Chem A. 2025 Jun 26;129(25):5450-5457. doi: 10.1021/acs.jpca.5c01424. Epub 2025 Jun 13.
Water structure and proton dynamics in complex environments, such as mixed electrolytes, biological environments, and microdroplet surfaces, are often hypothesized to affect reaction thermodynamics, kinetics, and selectivity. Toward better understanding the influence of water microphases in complex mixtures, this study leverages the proton-dependent recovery kinetics of a merocyanine photoacid in acetonitrile (ACN) and dimethyl sulfoxide (DMSO) over a range of water mole fractions χ. We report that the rates of recovery, , do not scale linearly with χ. In DMSO, which is a strong hydrogen bond acceptor, is quite slow until χ ∼ 0.7 and increases linearly beyond that value. This observation implies that the reaction requires the establishment of an extended hydrogen bond network that can only be afforded beyond a threshold. In contrast, the recovery rate in the more weakly hydrogen bond acceptor, ACN, shows three distinct regions as a function of increasing χ, implying isolated water molecules χ < 0.2, water nanopools 0.2 < χ < 0.6, and extended hydrogen bond networks χ > 0.6. Furthermore, when adding a model surfactant, cetyltrimethylammonium bromide (CTAB), to the ACN-HO mixtures, a sharp decline in the recovery rates is observed beyond χ ∼ 0.8. This behavior is consistent with the formation of micelles, likely incorporating the photoacid and limiting their access to the otherwise largely hydrogen-bonded network of water. This study informs the design principles of water delivery and proton access for creating tailored protonic environments for tuning reactivity.
在复杂环境中,如水混合电解质、生物环境和微滴表面,水的结构和质子动力学常被认为会影响反应的热力学、动力学和选择性。为了更好地理解复杂混合物中水微相的影响,本研究利用了一种部花青光酸在乙腈(ACN)和二甲基亚砜(DMSO)中,在一系列水摩尔分数χ范围内的质子依赖性恢复动力学。我们报道,恢复速率并不随χ呈线性变化。在作为强氢键受体的DMSO中,直到χ约为0.7时恢复速率都相当缓慢,超过该值后呈线性增加。这一观察结果表明,该反应需要建立一个扩展的氢键网络,而这只有在超过阈值时才能实现。相比之下,在氢键受体较弱的ACN中,恢复速率随χ增加呈现三个不同区域,这意味着χ < 0.2时为孤立水分子,0.2 < χ < 0.6时为水纳米池,χ > 0.时为扩展氢键网络。此外,当向ACN-H₂O混合物中添加一种模型表面活性剂十六烷基三甲基溴化铵(CTAB)时,χ超过约0.8后观察到恢复速率急剧下降。这种行为与胶束的形成一致,胶束可能包含光酸并限制了它们进入原本 largely 氢键连接的水网络。本研究为水传递和质子获取的设计原则提供了信息,以创建用于调节反应性的定制质子环境。