Suppr超能文献

盖膜横向粘弹性阻尼的主动控制:行波放大的第二种机制?

Active control of transverse viscoelastic damping in the tectorial membrane: A second mechanism for traveling-wave amplification?

作者信息

Deloche François, Thienpont Morgan, Moleti Arturo, Sisto Renata, Verhulst Sarah

机构信息

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Ghent, Belgium.

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Ghent, Belgium.

出版信息

Hear Res. 2025 Aug;464:109320. doi: 10.1016/j.heares.2025.109320. Epub 2025 Jun 7.

Abstract

Observations from optical coherence tomography (OCT) have revealed a velocity gradient across the reticular lamina in response to sounds (Cho and Puria, 2022). Since viscoelastic forces depend on velocity gradients, this finding suggests that OHC activity may influence viscous loss in the cochlea. Here, we propose a candidate mechanism for regulating traveling-wave viscous dissipation which involves the tectorial membrane (TM). We hypothesize that the velocity gradient generated in the OHC region, combined with TM structural properties, can reduce transverse deformations in the TM and, subsequently, transverse viscous damping. Based on this hypothesis and a simplified mechanical model, we derive a formula for an equivalent basilar membrane (BM) admittance in both passive and active scenarios. We use the WKB approximation to simulate traveling waves in response to tones at different stimulation levels. The calibration of the model is based on OCT data from mice, including data on TM motion. Our simulations show that modulating the viscous load affects the traveling wave in the peak region, with changes in BM velocity magnitude of up to 10 dB. The inclusion of a more classical anti-damping term is necessary to capture the full dynamic range of the response gain. With the textbook view of OHCs acting directly on the BM under re-evaluation in light of recent OCT data, the control of viscous damping in the TM emerges as a viable candidate for a second mechanism governing traveling-wave amplification.

摘要

光学相干断层扫描(OCT)的观察结果显示,响应声音时网状板上存在速度梯度(赵和普里亚,2022年)。由于粘弹性力取决于速度梯度,这一发现表明外毛细胞(OHC)的活动可能会影响耳蜗中的粘性损失。在此,我们提出一种调节行波粘性耗散的候选机制,该机制涉及盖膜(TM)。我们假设在OHC区域产生的速度梯度与TM的结构特性相结合,可以减少TM中的横向变形,进而减少横向粘性阻尼。基于这一假设和一个简化的力学模型,我们推导了被动和主动情况下等效基底膜(BM)导纳的公式。我们使用WKB近似来模拟不同刺激水平下对音调的行波响应。模型的校准基于小鼠的OCT数据,包括TM运动的数据。我们的模拟表明,调节粘性负载会影响峰值区域的行波,BM速度幅度变化高达10 dB。为了捕捉响应增益的完整动态范围,需要加入一个更经典的抗阻尼项。鉴于最近的OCT数据,OHC直接作用于BM的传统观点正在重新评估,TM中粘性阻尼的控制成为控制行波放大的第二种机制的可行候选者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验