Zhou Zhiqiang, Cui Lekang, Wang Jinxin, Liu Chuanlei, Ma Cheng, Zhang Yongzheng, Wang Jitong, Zhang Yayun, Qiao Wenming, Ling Licheng
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
J Colloid Interface Sci. 2025 Nov 15;698:138130. doi: 10.1016/j.jcis.2025.138130. Epub 2025 Jun 8.
High-energy-density lithium-sulfur (Li-S) batteries are hindered by the detrimental shuttle effect and sluggish redox conversion kinetics of lithium polysulfides (LiPSs) arising from the high energy barrier of Li diffusion kinetics at the electrode/electrolyte interface. Herein, the asymmetrically N,S co-coordinated atomic Fe sites (FeSAC-NS) are synthesized to present a strong interaction with Li based on the typical symmetry-broken electron redistribution. Comprehensive electrochemical and theoretical results reveal that FeSAC-NS as an efficient Li power pump could kinetically accelerate the dissociation of Li solvation structure and enhance the Li diffusion kinetics via the N-Fe-S active structure, further improving the bidirectional sulfur species redox electrochemistry. Encouraged by the FeSAC-NS catalytic promoter, the constructed Li-S batteries delivered an exceptional rate performance of 767 mAh g at 5 C and a high cyclic stability of 0.034% decaying rate over 700 cycles at 1 C. Even at a low temperature of 0 °C, the FeSAC-NS-based cells exhibited a low decay rate of 0.056% per cycle over 350 cycles at 0.5 C. This work provides a deep insight into the underlying mechanism of Li desolvation behavior facilitated by symmetry-broken atomic Fe sites.
高能量密度锂硫(Li-S)电池受到多硫化锂(LiPSs)有害的穿梭效应和缓慢的氧化还原转化动力学的阻碍,这是由电极/电解质界面处锂扩散动力学的高能量势垒引起的。在此,通过典型的对称性破缺电子重新分布合成了不对称的N、S共配位原子铁位点(FeSAC-NS),以呈现与锂的强相互作用。综合电化学和理论结果表明,FeSAC-NS作为一种高效的锂动力泵,可以通过N-Fe-S活性结构在动力学上加速锂溶剂化结构的解离并增强锂扩散动力学,进一步改善双向硫物种的氧化还原电化学。受FeSAC-NS催化促进剂的鼓舞,构建的Li-S电池在5 C下表现出767 mAh g的优异倍率性能,在1 C下700次循环中具有0.034%的低衰减率的高循环稳定性。即使在0°C的低温下,基于FeSAC-NS的电池在0.5 C下350次循环中也表现出每循环0.056%的低衰减率。这项工作深入洞察了由对称性破缺的原子铁位点促进的锂去溶剂化行为的潜在机制。