Zou Yanrui, Chen Weiwei, Gan Lihua, Chen Zhicheng, Song Yuxin, Gan Lin, Huang Jin
School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Chongqing Industry Technology Innovation Center of Sports Medicine, Southwest University, Chongqing 400715, China.
School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Chongqing Industry Technology Innovation Center of Sports Medicine, Southwest University, Chongqing 400715, China.
Int J Biol Macromol. 2025 Jul;318(Pt 3):144975. doi: 10.1016/j.ijbiomac.2025.144975. Epub 2025 Jun 11.
Porous materials based on cellulose nanocrystals (CNCs), rich of hydroxyl groups facilitating electron transfer, are promising anode dielectric layers of wearable triboelectric nanogenerators (TENG) due to their light weight. To match the bio-based cathode dielectric layer, we fluorinated the CNCs surface to generate electron acceptors, which is then combined with neat CNCs to form a PN heterojunction structure. The UV-Vis spectroscopy shows that the electronic energy gap between fluorinated CNCs (FCNCs) and CNCs decreases to 3.87 eV. The heterojunction material, without additional negative dielectric layers, establishes a vertical contact-separation mode of TENG, achieving an output power of 354.2 mW/m. Then, sodium alginate is used as flexible base to prepare elastic porous material, and single-walled carbon nanotubes are used to construct conductive network. Such a porous material exhibits a capacitance of 2.66 F/g, and the conductive network enhance the dielectric constant of the material to 3521.2, resulting in enhancement in self-powering capabilities. Meanwhile, this composite also presents a high strain piezoresistive sensitivity of 3.67. Thus, this heterojunction design should be a high-value strategy for CNCs-based materials to improve electromechanical conversion and piezoresistive sensitivity simultaneously, alongside to establish energy storage ability.
基于纤维素纳米晶体(CNC)的多孔材料富含促进电子转移的羟基,由于其重量轻,有望成为可穿戴摩擦纳米发电机(TENG)的阳极介电层。为了匹配生物基阴极介电层,我们对CNC表面进行氟化以生成电子受体,然后将其与纯CNC结合形成PN异质结结构。紫外可见光谱表明,氟化CNC(FCNC)和CNC之间的电子能隙降至3.87 eV。该异质结材料无需额外的负介电层,建立了TENG的垂直接触-分离模式,实现了354.2 mW/m的输出功率。然后,使用海藻酸钠作为柔性基底制备弹性多孔材料,并使用单壁碳纳米管构建导电网络。这种多孔材料表现出2.66 F/g的电容,导电网络将材料的介电常数提高到3521.2,从而增强了自供电能力。同时,这种复合材料还具有3.67的高应变压阻灵敏度。因此,这种异质结设计应该是一种高价值策略,用于基于CNC的材料同时提高机电转换和压阻灵敏度,并建立储能能力。