Wozniak Amy, O'Connor Paula, Seigal Jared, Vasilopoulos Vasilios, Beg Mirza Faisal, Popuri Karteek, Joyce Cara, Sheean Patricia
Loyola University Chicago, 2160 South First Avenue, Building 115, Maywood, IL 60153, USA.
Loyola University Chicago, Parkinson School of Health Science and Public Health, 2160 South First Avenue, Cuneo 4th Floor Suite, Maywood, IL 60153, USA.
Clin Nutr ESPEN. 2025 Aug;68:638-644. doi: 10.1016/j.clnesp.2025.06.006. Epub 2025 Jun 11.
Fully automated, artificial intelligence (AI) -based software has recently become available for scalable body composition analysis. Prior to broad application in the clinical arena, validation studies are needed. Our goal was to compare the results of a fully automated, AI-based software with a semi-automatic software in a sample of hospitalized patients.
A diverse group of patients with Coronovirus-2 (COVID-19) and evaluable computed tomography (CT) images were included in this retrospective cohort. Our goal was to compare multiple aspects of body composition procuring results from fully automated and semi-automated body composition software. Bland-Altman analyses and correlation coefficients were used to calculate average bias and trend of bias for skeletal muscle (SM), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), and total adipose tissue (TAT-the sum of SAT, VAT, and IMAT).
A total of 141 patients (average (standard deviation (SD)) age of 58.2 (18.9), 61 % male, and 31 % White Non-Hispanic, 31 % Black Non-Hispanic, and 33 % Hispanic) contributed to the analysis. Average bias (mean ± SD) was small (in comparison to the SD) and negative for SM (-3.79 cm ± 7.56 cm) and SAT (-7.06 cm ± 19.77 cm), and small and positive for VAT (2.29 cm ± 15.54 cm). A large negative bias was observed for IMAT (-7.77 cm ± 5.09 cm), where fully automated software underestimated intramuscular tissue quantity relative to the semi-automated software. The discrepancy in IMAT calculation was not uniform across its range given a correlation coefficient of -0.625; as average IMAT increased, the bias (underestimation by fully automated software) was greater.
When compared to a semi-automated software, a fully automated, AI-based software provides consistent findings for key CT body composition measures (SM, SAT, VAT, TAT). While our findings support good overall agreement as evidenced by small biases and limited outliers, additional studies are needed in other clinical populations to further support validity and advanced precision, especially in the context of body composition and malnutrition assessment.
基于人工智能(AI)的全自动软件最近已可用于可扩展的身体成分分析。在临床领域广泛应用之前,需要进行验证研究。我们的目标是在一组住院患者样本中比较基于AI的全自动软件和半自动软件的结果。
本回顾性队列研究纳入了一组患有新型冠状病毒2(COVID-19)且有可评估计算机断层扫描(CT)图像的患者。我们的目标是比较从全自动和半自动身体成分软件获得的身体成分结果的多个方面。采用Bland-Altman分析和相关系数来计算骨骼肌(SM)、内脏脂肪组织(VAT)、皮下脂肪组织(SAT)、肌间脂肪组织(IMAT)和总脂肪组织(TAT,即SAT、VAT和IMAT之和)的平均偏差和偏差趋势。
共有141名患者(平均(标准差(SD))年龄为58.2(18.9)岁,61%为男性,31%为非西班牙裔白人,31%为非西班牙裔黑人,33%为西班牙裔)参与了分析。平均偏差(均值±标准差)较小(与标准差相比),SM(-3.79 cm±7.56 cm)和SAT(-7.06 cm±19.77 cm)为负偏差,VAT(2.29 cm±15.54 cm)为小的正偏差。IMAT观察到较大的负偏差(-7.77 cm±5.09 cm),其中全自动软件相对于半自动软件低估了肌肉内组织数量。鉴于相关系数为-0.625,IMAT计算中的差异在其范围内并不均匀;随着平均IMAT的增加,偏差(全自动软件低估)更大。
与半自动软件相比,基于AI的全自动软件在关键CT身体成分测量(SM、SAT、VAT、TAT)方面提供了一致的结果。虽然我们的研究结果支持了良好的总体一致性,表现为偏差小和异常值有限,但在其他临床人群中还需要进一步研究,以进一步支持有效性和更高的精度,特别是在身体成分和营养不良评估方面。