Suppr超能文献

基于卷积神经网络的强度衍射断层扫描图像三维伪影校正方法。

CNN-based approach for 3D artifact correction of intensity diffraction tomography images.

作者信息

Pierré William, Briard Matéo, Godefroy Guillaume, Desissaire Sylvia, Dhellemmes Magali, Llano Edgar Del, Loeuillet Corinne, Ray Pierre F, Arnoult Christophe, Allier Cédric, Hervé Lionel, Paviolo Chiara

出版信息

Opt Express. 2024 Sep 23;32(20):34825-34837. doi: 10.1364/OE.523289.

Abstract

3D reconstructions after tomographic imaging often suffer from elongation artifacts due to the limited-angle acquisitions. Retrieving the original 3D shape is not an easy task, mainly due to the intrinsic morphological changes that biological objects undergo during their development. Here we present to the best of our knowledge a novel approach for correcting 3D artifacts after 3D reconstructions of intensity-only tomographic acquisitions. The method relies on a network architecture that combines a volumetric and a 3D finite object approach. The framework was applied to time-lapse images of a mouse preimplantation embryo developing from fertilization to the blastocyst stage, proving the correction of the axial elongation and the recovery of the spherical objects. This work paves the way for novel directions on a generalized non-supervised pipeline suited for different biological samples and imaging conditions.

摘要

断层成像后的三维重建通常会因有限角度采集而出现拉长伪影。恢复原始三维形状并非易事,主要是由于生物物体在发育过程中会发生内在形态变化。在此,据我们所知,我们提出了一种新颖的方法,用于校正仅强度断层采集的三维重建后的三维伪影。该方法依赖于一种结合了体积和三维有限物体方法的网络架构。该框架应用于从小鼠受精到囊胚阶段发育的植入前胚胎的延时图像,证明了轴向拉长的校正和球形物体的恢复。这项工作为适用于不同生物样本和成像条件的广义无监督流程的新方向铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验