Pei Dongxu, Wang Peisen, Hao Jie, Zi Yucheng, Zhang Ousheng, Yang Jigang, Tang Jianhua, Hu Jun
Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
Aerospace Research Institute of Materials and Processing Technology, Yungang North Ring Road 40, Fengtai District, Beijing, 100074, China.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202505526. doi: 10.1002/anie.202505526. Epub 2025 Jun 23.
Epoxy-based carbon fiber-reinforced composites (EP-CFRCs) are appealing for engineering applications due to their exceptional specific strength and modulus. Nevertheless, the intrinsic brittleness and limited recyclability of highly cross-linked epoxy matrices pose significant challenges to their sustainable development. Herein, we present an approach combining dynamic ester bonds with semi-interpenetrating polymer networks (SIPNs) to overcome these challenges. This strategy leverages the crosslinked epoxy network to resist deformation, while hydrogen bonds and entangled SIPNs to facilitate energy dissipation, enhancing both strength and toughness. The resultant epoxy matrix exhibits superior tensile strength of 123 MPa and record-breaking impact strength of 52.3 kJ m, effectively overcoming the long-standing trade-off between strength and toughness in thermosets. This balanced performance renders it a promising matrix for high-performance EP-CFRCs, which display a tensile strength of 718 MPa and a bending deflection of 0.59 mm. Moreover, the embedded tertiary amines accelerate transesterification reactions, enabling closed-loop recycling of EP-CFRCs in water. The recycled carbon fibers and the degraded matrix can be reused in new composites and adhesives. This work presents a simple yet effective strategy for designing epoxy resin-based composites that overcome the limitations of traditional matrices and support the development of recyclable advanced materials for diverse industrial applications.
基于环氧树脂的碳纤维增强复合材料(EP-CFRCs)因其出色的比强度和模量而在工程应用中颇具吸引力。然而,高度交联的环氧基体固有的脆性和有限的可回收性对其可持续发展构成了重大挑战。在此,我们提出一种将动态酯键与半互穿聚合物网络(SIPNs)相结合的方法来克服这些挑战。该策略利用交联的环氧网络来抵抗变形,同时利用氢键和缠结的SIPNs来促进能量耗散,从而提高强度和韧性。所得的环氧基体表现出123MPa的优异拉伸强度和52.3kJ/m的破纪录冲击强度,有效克服了热固性材料中长期存在的强度与韧性之间的权衡。这种平衡的性能使其成为高性能EP-CFRCs的有前途的基体,后者表现出718MPa的拉伸强度和0.59mm的弯曲挠度。此外,嵌入的叔胺加速酯交换反应,使EP-CFRCs能够在水中进行闭环回收。回收的碳纤维和降解的基体可重新用于新的复合材料和粘合剂中。这项工作提出了一种简单而有效的策略来设计基于环氧树脂的复合材料,该策略克服了传统基体的局限性,并支持开发用于各种工业应用的可回收先进材料。