Daki Iliass, Saloumi Nezha, Yousfi Mohamed, Parajua-Sejil Caroline, Truchot Vivien, Gérard Jean-François, Cherkaoui Omar, Hannache Hassan, El Bouchti Mehdi, Oumam Mina
REMTEX Laboratory, Higher School of Textile and Clothing Industries (ESITH), Casablanca 20200, Morocco.
Laboratory of Engineering and Materials LIMAT, Faculty of Science Ben M'Sik, Hassan II University, Casablanca 20670, Morocco.
Polymers (Basel). 2025 Jun 11;17(12):1627. doi: 10.3390/polym17121627.
Currently, the main drivers for the production of phosphate glass fiber-reinforced composites are the growing demand for lightweight materials, reduced energy consumption, improved durability, and minimized environmental impact. This study aims to develop thermoset-based composites using chopped and continuous phosphate glass fibers (PGFs) combined with polyester and epoxy matrices, processed via contact molding. Physical, mechanical, thermal, and morphological characterizations were conducted. The addition of PGFs led to a steady increase in density and fiber volume fraction. For polyester composites with short PGFs, density rose from 1.60 g/cm (0 wt%) to 1.77 g/cm (22.8 wt%), with a corresponding volume fraction increase from 0% to 14.4%. Similarly, epoxy composites showed density values from 1.70 g/cm to 1.87 g/cm and volume fractions up to 15.2%. Thermogravimetric analysis (TGA) showed that as the fiber content increased, the thermal degradation of the resin was delayed, as evidenced by a rise in onset degradation temperature and greater residual mass-indicating improved thermal stability of the composites. Tensile strength increased from 20.8 MPa to 71.3 MPa (polyester) and from 26.8 MPa to 75.9 MPa (epoxy) with chopped fibers, reaching 145.7 MPa and 187.9 MPa, respectively, with continuous fibers. Flexural strength reached 167.9 MPa (polyester) and 218.0 MPa (epoxy) in continuous-fiber configurations. Young's modulus values closely matched Hirsch model predictions. These findings confirm the potential of PGF-reinforced thermoset composites for high-performance and sustainable material applications.
目前,生产磷酸盐玻璃纤维增强复合材料的主要驱动力是对轻质材料的需求不断增长、能源消耗降低、耐久性提高以及环境影响最小化。本研究旨在开发基于热固性的复合材料,使用短切和连续的磷酸盐玻璃纤维(PGF)与聚酯和环氧树脂基体相结合,通过接触成型工艺进行加工。进行了物理、机械、热学和形态学表征。添加PGF导致密度和纤维体积分数稳步增加。对于含短PGF的聚酯复合材料,密度从1.60 g/cm³(0 wt%)升至1.77 g/cm³(22.8 wt%),相应的体积分数从0%增加到14.4%。同样,环氧复合材料的密度值为1.70 g/cm³至1.87 g/cm³,体积分数高达15.2%。热重分析(TGA)表明,随着纤维含量增加,树脂的热降解延迟,起始降解温度升高和残余质量增加证明了这一点,表明复合材料的热稳定性提高。短切纤维时,聚酯的拉伸强度从20.8 MPa增加到71.3 MPa,环氧的拉伸强度从26.8 MPa增加到75.9 MPa,连续纤维时分别达到145.7 MPa和187.9 MPa。连续纤维配置下,聚酯和环氧的弯曲强度分别达到167.9 MPa和218.0 MPa。杨氏模量值与赫希模型预测值密切匹配。这些发现证实了PGF增强热固性复合材料在高性能和可持续材料应用方面的潜力。