Suppr超能文献

重新定义红霉素N-乙酰基转移酶在天然产物生物合成途径中的作用。

Redefining the role of the EryM acetyltransferase in natural product biosynthetic pathways.

作者信息

Li Yihua, Liu Xunkun, Harris Natalia R, Roberts Jacquelyn R, Valdivia Estefanía Martínez, Ji Xinrui, Smith Janet L

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Structure. 2025 Aug 7;33(8):1352-1361.e3. doi: 10.1016/j.str.2025.05.011. Epub 2025 Jun 13.

Abstract

The GNAT (GCN5-related N-acetyltransferase) superfamily comprises enzymes with a conserved fold and diverse catalytic activities, including primarily acyl transfer, with a few examples of decarboxylation. EryM, a GNAT from Saccharopolyspora erythraea, has been implicated in both erythromycin and erythrochelin biosynthesis, with dual functionality as an acetyltransferase and a decarboxylase. Despite an historical association with malonyl-coenzyme A decarboxylation activity, this dual activity has remained enigmatic as its close homologs were identified with only acyl transfer activity. Here, functional assays demonstrate that EryM catalyzes acyl transfer but lacks decarboxylation activity, challenging long-standing assumptions about its biosynthetic role. Crystal structures of EryM and an acetyl-CoA complex and comparison with homologs in siderophore pathways reveal a conserved catalytic pocket with an essential His and identically positioned side chains common to GNAT enzymes for N-acyl transfer from CoA to primary hydroxylamine substrates. Bioinformatic analysis defines a large GNAT subfamily broadly distributed in the microbial world.

摘要

GNAT(与GCN5相关的N-乙酰基转移酶)超家族包含具有保守折叠结构和多种催化活性的酶,主要包括酰基转移活性,也有少数脱羧反应的例子。EryM是来自糖多孢红霉菌的一种GNAT,参与红霉素和红螯菌素的生物合成,具有乙酰转移酶和脱羧酶的双重功能。尽管历史上一直认为它具有丙二酰辅酶A脱羧酶活性,但这种双重活性一直令人费解,因为其紧密同源物仅具有酰基转移活性。在这里,功能测定表明EryM催化酰基转移,但缺乏脱羧活性,这对其生物合成作用的长期假设提出了挑战。EryM与乙酰辅酶A复合物的晶体结构以及与铁载体途径中同源物的比较揭示了一个保守的催化口袋,其中有一个必需的组氨酸以及GNAT酶共有的相同位置的侧链,用于将酰基从辅酶A转移到伯羟胺底物。生物信息学分析定义了一个广泛分布于微生物界的大型GNAT亚家族。

相似文献

1
Redefining the role of the EryM acetyltransferase in natural product biosynthetic pathways.
Structure. 2025 Aug 7;33(8):1352-1361.e3. doi: 10.1016/j.str.2025.05.011. Epub 2025 Jun 13.
2
Redefining the Role of the EryM Acetyltransferase in Natural Product Biosynthetic Pathways.
bioRxiv. 2025 Mar 11:2025.03.07.642089. doi: 10.1101/2025.03.07.642089.
4
Repurposing the GNAT Fold in the Initiation of Polyketide Biosynthesis.
Structure. 2020 Jan 7;28(1):63-74.e4. doi: 10.1016/j.str.2019.11.004. Epub 2019 Nov 27.
5
Mechanistic Insights into Homoserine -Acetyltransferase from .
Biochemistry. 2025 Aug 5;64(15):3299-3310. doi: 10.1021/acs.biochem.5c00089. Epub 2025 Jul 22.
6
The molecular basis for acetylhistidine synthesis by HisAT/NAT16.
Nat Commun. 2025 Jul 1;16(1):5960. doi: 10.1038/s41467-025-61145-x.
7
GNAT-like strategy for polyketide chain initiation.
Science. 2007 Nov 9;318(5852):970-4. doi: 10.1126/science.1148790.
8
Engineering the TCA cycle regulator GarA to increase erythromycin production in .
Microbiology (Reading). 2025 Aug;171(8). doi: 10.1099/mic.0.001583.
10
Revisiting synthetic lethality of Gcn5-related N-acetyltransferase (GNAT) family mutations in .
Microbiol Spectr. 2025 Jul 2:e0122925. doi: 10.1128/spectrum.01229-25.

本文引用的文献

1
Structure of a putative terminal amidation domain in natural product biosynthesis.
Structure. 2025 May 1;33(5):935-947.e4. doi: 10.1016/j.str.2025.02.005. Epub 2025 Mar 13.
2
SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.
J Struct Biol X. 2024 Dec 26;11:100119. doi: 10.1016/j.yjsbx.2024.100119. eCollection 2025 Jun.
3
The conserved domain database in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D384-D388. doi: 10.1093/nar/gkac1096.
4
Dali server: structural unification of protein families.
Nucleic Acids Res. 2022 Jul 5;50(W1):W210-W215. doi: 10.1093/nar/gkac387.
5
Structural Basis for Control of Methylation Extent in Polyketide Synthase Metal-Dependent -Methyltransferases.
ACS Chem Biol. 2022 Aug 19;17(8):2088-2098. doi: 10.1021/acschembio.2c00085. Epub 2022 May 20.
6
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
7
Repurposing the GNAT Fold in the Initiation of Polyketide Biosynthesis.
Structure. 2020 Jan 7;28(1):63-74.e4. doi: 10.1016/j.str.2019.11.004. Epub 2019 Nov 27.
8
Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. doi: 10.1107/S2059798319011471. Epub 2019 Oct 2.
10
Precursor Supply for Erythromycin Biosynthesis: Engineering of Propionate Assimilation Pathway Based on Propionylation Modification.
ACS Synth Biol. 2019 Feb 15;8(2):371-380. doi: 10.1021/acssynbio.8b00396. Epub 2019 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验