Suppr超能文献

CRISPR-Cas技术与RNA测序揭示了藜麦中有助于植物性运动员恢复饮食及未来粮食安全的营养强化途径。

CRISPR-Cas and RNA sequencing reveal nutrient enhancement pathways in quinoa for plant-based athlete recovery diets and future food security.

作者信息

Bu Guang, Ma Xuelian, Jin Hao, Wang Lei

机构信息

Department of Physical Education, Hebei Agricultural University, BaoDing 071000, China.

Department of Physical Education, Hebei Vocational University of Technology and Engineering, XingTai 054000, China.

出版信息

Int J Biol Macromol. 2025 Jul;318(Pt 4):144785. doi: 10.1016/j.ijbiomac.2025.144785. Epub 2025 Jun 12.

Abstract

Quinoa (Chenopodium quinoa Willd.) is a nutrient-dense, climate-resilient pseudocereal with growing relevance to food and nutritional security. However, its potential remains underutilized due to suboptimal levels of key micronutrients. In this study, to apply CRISPR-Cas9 for the simultaneous enhancement of multiple nutrients in quinoa, marking a significant advancement in crop biofortification, we employed multiplexed CRISPR-Cas9 genome editing to target five genes involved in lysine transport, phytic acid biosynthesis, and vitamin C and E biosynthetic pathways. Both knockout and homology-directed knock-in strategies were applied to induce heritable mutations in genes such as CqAAP1, CqIPK1, CqGGP, and CqHPT. Homology-directed knock-in refers to a precise gene-editing method that uses a template to insert specific genetic changes at targeted sites in the genome. Edited lines exhibited significant improvements in seed nutrient concentrations, including lysine (+35 %), zinc (+43 %), vitamin C (+114 %), and vitamin E (+45 %), without yield or growth penalties. Whole-transcriptome profiling via RNA sequencing (RNA-Seq) identified 1284 differentially expressed genes (FDR < 0.05), predominantly associated with amino acid metabolism, redox regulation, and vitamin biosynthesis. Gene Ontology (GO) and KEGG enrichment analyses confirmed the transcriptional activation of nutrient assimilation and antioxidant pathways. Integration of qRT-PCR with RNA-Seq confirmed the reliability of expression data. Structural validations of edits were performed using PCR, gel electrophoresis, and Sanger sequencing. Phenotypic assessments, including seed weight, morphology, and exploratory herbivory assays, confirmed agronomic stability. This study presents a technically validated framework for simultaneous nutritional trait stacking in quinoa using nucleic acid engineering tools. Our findings offer critical insights into the transcriptional plasticity of quinoa and establish a functional genomics platform for developing multi-nutrient biofortified crops to address hidden hunger and advance sustainable food systems.

摘要

藜麦(Chenopodium quinoa Willd.)是一种营养丰富、适应气候变化的假谷物,对粮食和营养安全的重要性日益凸显。然而,由于关键微量营养素水平不理想,其潜力仍未得到充分利用。在本研究中,为了应用CRISPR-Cas9同时提高藜麦中的多种营养素,这标志着作物生物强化方面的重大进展,我们采用多重CRISPR-Cas9基因组编辑技术靶向五个参与赖氨酸转运、植酸生物合成以及维生素C和E生物合成途径的基因。敲除和同源定向敲入策略均被用于诱导CqAAP1、CqIPK1、CqGGP和CqHPT等基因的可遗传突变。同源定向敲入是一种精确的基因编辑方法,它使用模板在基因组的目标位点插入特定的基因变化。编辑后的品系在种子营养成分浓度方面有显著改善,包括赖氨酸(+35%)、锌(+43%)、维生素C(+114%)和维生素E(+45%),且没有产量或生长损失。通过RNA测序(RNA-Seq)进行的全转录组分析鉴定出1284个差异表达基因(FDR<0.05),主要与氨基酸代谢、氧化还原调节和维生素生物合成相关。基因本体论(GO)和KEGG富集分析证实了营养同化和抗氧化途径的转录激活。qRT-PCR与RNA-Seq的整合证实了表达数据的可靠性。使用PCR、凝胶电泳和桑格测序对编辑进行了结构验证。包括种子重量、形态和探索性食草动物试验在内的表型评估证实了农艺稳定性。本研究提出了一个使用核酸工程工具在藜麦中同时叠加营养性状的经过技术验证的框架。我们的研究结果为藜麦的转录可塑性提供了关键见解,并建立了一个功能基因组学平台,用于开发多营养生物强化作物,以解决隐性饥饿问题并推动可持续粮食系统的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验