Suppr超能文献

用于人工智能驱动的临床决策支持系统的临床医生告知的可解释人工智能评估清单及指标(CLIX-M)

Clinician-informed XAI evaluation checklist with metrics (CLIX-M) for AI-powered clinical decision support systems.

作者信息

Brankovic Aida, Cook David, Rahman Jessica, Delaforce Alana, Li Jane, Magrabi Farah, Cabitza Federico, Coiera Enrico, Bradford DanaKai

机构信息

CSIRO's Australian eHealth Research Centre, Herston, QLD, Australia.

The University of Queensland, Brisbane, QLD, Australia.

出版信息

NPJ Digit Med. 2025 Jun 14;8(1):364. doi: 10.1038/s41746-025-01764-2.

Abstract

The rapid growth of clinical explainable AI (XAI) models raised concerns over unclear purposes and false hope regarding explanations. Currently, no standardised metrics exist for XAI evaluation. We developed a clinician-informed, 14-item checklist including clinical, machine and decision attributes. This is the first step toward XAI standardisation and transparent reporting XAI methods to enhance trust, reduce risks, foster AI adoption, and improve decisions to determine the true clinical potential of applied XAI.

摘要

临床可解释人工智能(XAI)模型的快速发展引发了人们对其目的不明确以及解释带来的虚假希望的担忧。目前,XAI评估尚无标准化指标。我们制定了一份由临床医生提供信息的、包含14项内容的清单,涵盖临床、机器和决策属性。这是迈向XAI标准化以及透明报告XAI方法的第一步,目的是增强信任、降低风险、促进人工智能的应用,并改进决策,以确定应用XAI的真正临床潜力。

相似文献

5
Enhancing Clinical Decision Support: A Heuristic Evaluation of Explainable AI in Healthcare Dashboards.
Stud Health Technol Inform. 2025 May 15;327:343-347. doi: 10.3233/SHTI250341.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验