Suppr超能文献

基于CT的多模态深度学习用于接受免疫治疗的晚期肝细胞癌患者的无创总生存预测

CT-based multimodal deep learning for non-invasive overall survival prediction in advanced hepatocellular carcinoma patients treated with immunotherapy.

作者信息

Xia Yujia, Zhou Jie, Xun Xiaolei, Zhang Jin, Wei Ting, Gao Ruitian, Reddy Bobby, Liu Chao, Kim Geoffrey, Yu Zhangsheng

机构信息

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Insights Imaging. 2024 Aug 26;15(1):214. doi: 10.1186/s13244-024-01784-8.

Abstract

OBJECTIVES

To develop a deep learning model combining CT scans and clinical information to predict overall survival in advanced hepatocellular carcinoma (HCC).

METHODS

This retrospective study included immunotherapy-treated advanced HCC patients from 52 multi-national in-house centers between 2018 and 2022. A multi-modal prognostic model using baseline and the first follow-up CT images and 7 clinical variables was proposed. A convolutional-recurrent neural network (CRNN) was developed to extract spatial-temporal information from automatically selected representative 2D CT slices to provide a radiological score, then fused with a Cox-based clinical score to provide the survival risk. The model's effectiveness was assessed using a time-dependent area under the receiver operating curve (AUC), and risk group stratification using the log-rank test. Prognostic performances of multi-modal inputs were compared to models of missing modality, and the size-based RECIST criteria.

RESULTS

Two-hundred seven patients (mean age, 61 years ± 12 [SD], 180 men) were included. The multi-modal CRNN model reached the AUC of 0.777 and 0.704 of 1-year overall survival predictions in the validation and test sets. The model achieved significant risk stratification in validation (hazard ratio [HR] = 3.330, p = 0.008), and test sets (HR = 2.024, p = 0.047) based on the median risk score of the training set. Models with missing modalities (the single-modal imaging-based model and the model incorporating only baseline scans) can still achieve favorable risk stratification performance (all p < 0.05, except for one, p = 0.053). Moreover, results proved the superiority of the deep learning-based model to the RECIST criteria.

CONCLUSION

Deep learning analysis of CT scans and clinical data can offer significant prognostic insights for patients with advanced HCC.

CRITICAL RELEVANCE STATEMENT

The established model can help monitor patients' disease statuses and identify those with poor prognosis at the time of first follow-up, helping clinicians make informed treatment decisions, as well as early and timely interventions.

KEY POINTS

An AI-based prognostic model was developed for advanced HCC using multi-national patients. The model extracts spatial-temporal information from CT scans and integrates it with clinical variables to prognosticate. The model demonstrated superior prognostic ability compared to the conventional size-based RECIST method.

摘要

目的

开发一种结合CT扫描和临床信息的深度学习模型,以预测晚期肝细胞癌(HCC)的总生存期。

方法

这项回顾性研究纳入了2018年至2022年间来自52个多国家内部中心接受免疫治疗的晚期HCC患者。提出了一种使用基线和首次随访CT图像以及7个临床变量的多模态预后模型。开发了一种卷积循环神经网络(CRNN),从自动选择的代表性二维CT切片中提取时空信息以提供放射学评分,然后与基于Cox的临床评分融合以提供生存风险。使用受试者操作特征曲线下的时间依赖性面积(AUC)评估模型的有效性,并使用对数秩检验进行风险组分层。将多模态输入的预后性能与缺失模态的模型以及基于大小的RECIST标准进行比较。

结果

纳入207例患者(平均年龄61岁±12[标准差],180例男性)。多模态CRNN模型在验证集和测试集中1年总生存期预测的AUC分别达到0.777和0.704。基于训练集的中位风险评分,该模型在验证集(风险比[HR]=3.330,p=0.008)和测试集(HR=2.024,p=0.047)中实现了显著的风险分层。具有缺失模态的模型(基于单模态成像的模型和仅纳入基线扫描的模型)仍可实现良好的风险分层性能(除一项p=0.053外,所有p<0.05)。此外,结果证明了基于深度学习的模型优于RECIST标准。

结论

对CT扫描和临床数据进行深度学习分析可为晚期HCC患者提供重要的预后见解。

关键相关性声明

所建立的模型有助于监测患者的疾病状态,并在首次随访时识别预后不良的患者,帮助临床医生做出明智的治疗决策以及早期和及时的干预。

要点

使用多国患者开发了一种基于人工智能的晚期HCC预后模型。该模型从CT扫描中提取时空信息并将其与临床变量整合以进行预后评估。与传统的基于大小的RECIST方法相比,该模型表现出优越的预后能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b90e/11347550/abd281637115/13244_2024_1784_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验