Li Jiamu, Sun Aijia, Lai Han, Li Chuanhe, Li Huayi, Yang Zhengchun, Pan Peng, He Jie, Zhang Rui, Wang Chunhong
School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China.
School of Textile Science & Engineering, Tiangong University, Tianjin, China.
Bioelectrochemistry. 2025 Dec;166:109031. doi: 10.1016/j.bioelechem.2025.109031. Epub 2025 Jun 14.
In this study, an electrochemical sensor for the specific detection of Pseudomonas aeruginosa (P. aeruginosa) was developed using an F23 aptamer-functionalized nitrogen-doped multi-walled carbon nanotubes (N doped-MWCNTs) and silver nanoparticles (AgNPs) composite. Systematic optimization of the Ag/C ratio revealed that a 1:10 composition delivers superior electrochemical performance, owing to synergistic effects between highly dispersed AgNPs and efficient nitrogen doping. Then a biosensor was constructed based on a three-electrode system, featuring a screen-printed electrode (SPE) modified with optimized N-doped MWCNTs/AgNPs-10/F23 aptamer as the working electrode. The structural and compositional characteristics of the sensor materials were systematically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was evaluated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to assess the conductivity and charge transfer properties of the electrode materials. The sensor exhibited a wide linear detection range from 10 to 10 CFU·mL and the limit of detection is 0.0798 CFU·mL, demonstrating high specificity and sensitivity for P. aeruginosa. This study demonstrates a novel strategy for developing cost-effective, portable biosensors with exceptional selectivity for bacterial pathogen detection, offering significant potential for real-time environmental monitoring and point-of-care diagnostic applications.
在本研究中,使用F23适配体功能化的氮掺杂多壁碳纳米管(N掺杂-MWCNTs)和银纳米颗粒(AgNPs)复合材料开发了一种用于特异性检测铜绿假单胞菌的电化学传感器。对Ag/C比例的系统优化表明,1:10的组成具有优异的电化学性能,这归因于高度分散的AgNPs与有效氮掺杂之间的协同效应。然后基于三电极系统构建了一种生物传感器,其特征在于以优化的N掺杂MWCNTs/AgNPs-10/F23适配体修饰的丝网印刷电极(SPE)作为工作电极。使用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDS)和X射线光电子能谱(XPS)对传感器材料的结构和组成特征进行了系统表征。通过循环伏安法(CV)和电化学阻抗谱(EIS)评估电化学性能,以评估电极材料的导电性和电荷转移特性。该传感器的线性检测范围为10至10 CFU·mL,检测限为0.0798 CFU·mL,对铜绿假单胞菌表现出高特异性和灵敏度。本研究展示了一种开发具有成本效益、便携式生物传感器的新策略,该生物传感器对细菌病原体检测具有出色的选择性,在实时环境监测和即时诊断应用方面具有巨大潜力。