Suppr超能文献

具有面心立方结构的多组分钌基合金在氢氧化电催化中实现了高活性和一氧化碳耐受性。

Multicomponent Ru-Based Alloys with a Face-Centered Cubic Structure Achieve High Activity and CO Tolerance for Hydrogen Oxidation Electrocatalysis.

作者信息

Yao Qing, Ren Renjie, Zhu Yuanmin, Yan Wei, Yu Zhiyong, Huang Zhongliang, Song Aiying, Lin Haixin, Zhuang Lin, Chen Zhe-Ning, Chen Nanjun, Huang Xiaoqing

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.

出版信息

J Am Chem Soc. 2025 Jul 2;147(26):22517-22528. doi: 10.1021/jacs.5c02339. Epub 2025 Jun 16.

Abstract

The face-centered cubic (fcc) Ru exhibits great potential for the alkaline hydrogen oxidation reaction (HOR), while achieving high HOR activity and CO tolerance poses a formidable challenge for Ru catalysts in practical fuel cells, particularly when using CO-contaminated H, such as gray and blue hydrogen. Here, we propose a compositional diversification strategy to create 14 types of fcc Ru-based alloys, in which adjustable compositions can tune the nanostructure while offsetting the limitations of single Ru. Among them, quinary RuInPtNiCu nanocrystals (NCs) exhibit an outstanding HOR activity of 5.36 A mg, which is 15.9 and 2.9 times higher than those of commercial Pt/C (0.338 A mg) and single Ru NCs (1.88 A mg), respectively. More importantly, the RuInPtNiCu-based membrane electrode assembly (MEA) achieves a high peak power density of 1.72 W cm and a remarkable mass activity of 19.0 A mg@0.65 V in H-O, and the RuInPtNiCu-based MEA can be run stably at 0.6 A cm for over 100 h. Moreover, the RuInPtNiCu retains 94.6% of the HOR current after exposure to H containing 1000 ppm CO for 8000 s in a rotating disk electrode and retains 92.5% of cell voltage after a CO-toxicity stability test in fuel cells, underscoring its exceptional CO tolerance. Mechanism and computation studies corroborate that the optimized electronic structure and atomic configuration of RuInPtNiCu weaken the adsorption of surface species (*H, *OH, and CO) and alter the CO adsorption mode on active sites, thus leading to enhanced HOR performance and CO tolerance.

摘要

面心立方(fcc)结构的钌在碱性氢氧化反应(HOR)中展现出巨大潜力,然而,要在实际燃料电池中实现高HOR活性和抗CO能力,对于钌催化剂而言是一项艰巨挑战,尤其是当使用含CO的氢气(如灰氢和蓝氢)时。在此,我们提出一种成分多样化策略,以制备14种fcc结构的钌基合金,其中可调节的成分能够调整纳米结构,同时弥补单一钌的局限性。其中,五元钌铟铂镍铜纳米晶体(NCs)展现出5.36 A mg的出色HOR活性,分别比商业铂碳(0.338 A mg)和单一钌NCs(1.88 A mg)高15.9倍和2.9倍。更重要的是,基于钌铟铂镍铜的膜电极组件(MEA)在氢氧燃料电池中实现了1.72 W cm的高峰值功率密度和0.65 V下19.0 A mg的显著质量活性,并且基于钌铟铂镍铜的MEA能够在0.6 A cm下稳定运行超过100小时。此外,在旋转圆盘电极中,钌铟铂镍铜在暴露于含1000 ppm CO的氢气中8000秒后仍保留94.6%的HOR电流,在燃料电池进行CO毒性稳定性测试后仍保留92.5%的电池电压,突显了其卓越的抗CO能力。机理和计算研究证实,钌铟铂镍铜优化的电子结构和原子构型减弱了表面物种(*H、*OH和CO)的吸附,并改变了活性位点上CO的吸附模式,从而导致HOR性能和抗CO能力增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验