Suppr超能文献

结合临床图像分析的感兴趣区域手动勾勒以预测非小细胞肺癌中的Ki-67表达水平

Manual Delineation of the Region of Interest Combined With Clinical Image Analysis to Predict the Ki-67 Expression Level in Non-small Cell Lung Cancer.

作者信息

Li Yizhi, Zhang Jia, Lin Xiaodan

机构信息

Department of Radiation Therapy, Affillated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, China.

出版信息

Sage Open Pathol. 2025 May 12;18:30502098251336608. doi: 10.1177/30502098251336608. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

The Ki-67 antigen, a marker of cell proliferation, serves as a biomarker for assessing tumor malignancy. However, measuring Ki-67 levels through immunohistochemistry is often challenging due to difficulties in specimen collection and individual health issues. Radiological analysis has emerged as a potential alternative for predicting Ki-67 levels, although its accuracy has been limited. This study aims to enhance the prediction of Ki-67 levels using chest X-rays by employing a refined approach that combines detailed, manually delineated radiological features with conventional imaging characteristics.

METHODS

This study collected X-ray images and Ki-67 expression data from 109 patients diagnosed with Non-Small Cell Lung Cancer (NSCLC). Seven radiological features related to tumor progression were annotated on each image by clinical professionals. Tumor areas were delineated using Python, resulting in the generation of 5 types of data from these regions. Data integration facilitated the development of predictive models utilizing Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Deep Neural Networks (DNN), with feature selection processes applied.

RESULTS

Using the RF, 8 predictive features were selected from the datasets, of which 7 exhibited a linear correlation with Ki-67 levels (Mantel-Haenszel test,  < .05). The model demonstrated robust performance metrics: Accuracy: 0.818, Precision: 0.823, Recall: 0.849, and F1 Score: 0.783.

CONCLUSIONS

This research underscores the effectiveness of integrating specific radiological features, manually delineated regions of interest (ROIs), with traditional imaging characteristics and machine learning techniques. This approach significantly enhances the predictive accuracy of chest X-rays for Ki-67 levels, offering a non-invasive method for Ki-67 estimation.

摘要

背景

Ki-67抗原作为细胞增殖标志物,可作为评估肿瘤恶性程度的生物标志物。然而,由于标本采集困难和个体健康问题,通过免疫组织化学测量Ki-67水平往往具有挑战性。放射学分析已成为预测Ki-67水平的一种潜在替代方法,但其准确性有限。本研究旨在通过采用一种精细的方法来提高利用胸部X光预测Ki-67水平的能力,该方法将详细的、手动勾勒的放射学特征与传统成像特征相结合。

方法

本研究收集了109例非小细胞肺癌(NSCLC)患者的X光图像和Ki-67表达数据。临床专业人员在每张图像上标注了7个与肿瘤进展相关的放射学特征。使用Python勾勒肿瘤区域,从这些区域生成了5种类型的数据。数据整合促进了利用逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)和深度神经网络(DNN)开发预测模型,并应用了特征选择过程。

结果

使用RF从数据集中选择了8个预测特征,其中7个与Ki-67水平呈线性相关(Mantel-Haenszel检验,<0.05)。该模型表现出稳健的性能指标:准确率:0.818,精确率:0.823,召回率:0.849,F1分数:0.783。

结论

本研究强调了将特定放射学特征、手动勾勒的感兴趣区域(ROI)与传统成像特征和机器学习技术相结合的有效性。这种方法显著提高了胸部X光对Ki-67水平的预测准确性,为Ki-67估计提供了一种非侵入性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50b5/12161620/89f06d08992d/10.1177_30502098251336608-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验