Suppr超能文献

全面的植物健康监测:利用时空图像数据进行专家级评估。

Comprehensive plant health monitoring: expert-level assessment with spatio-temporal image data.

作者信息

Fuentes Alvaro, Asgher Syed Ali, Dong Jiuqing, Jeong Yongchae, Lee Mun Haeng, Kim Taehyun, Yoon Sook, Park Dong Sun

机构信息

Department of Electronics Engineering, Jeonbuk National University, Jeonju, Republic of Korea.

Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju, Republic of Korea.

出版信息

Front Plant Sci. 2025 May 30;16:1511651. doi: 10.3389/fpls.2025.1511651. eCollection 2025.

Abstract

Maintaining crop health is essential for global food security, yet traditional plant monitoring methods based on manual inspection are labor-intensive and often inadequate for early detection of stressors and diseases, and insufficient for timely, proactive interventions. To address this challenge, we propose a deep learning-based framework for expert-level, spatiotemporal plant health assessment using sequential RGB images. Our method categorizes plant health into five levels, ranging from very poor to optimal, based on visual and morphological indicators observed throughout the cultivation cycle. To validate the approach, we collected a custom dataset of 12,119 annotated images from 200 tomato plants across three varieties, grown in semi-open greenhouses over multiple cultivation seasons within one year. The framework leverages state-of-the-art CNN and transformer architectures to produce accurate, stage-specific health predictions. These predictions closely align with expert annotations, demonstrating the model's reliability in tracking plant health progression. In addition, the system enables the generation of dynamic cultivation maps for continuous monitoring and early intervention, supporting data-driven crop management. Overall, the results highlight the potential of this framework to advance precision agriculture through scalable, automated plant health monitoring, guided by an understanding of key visual indicators and stressors affecting crop health throughout the cultivation period.

摘要

维持作物健康对全球粮食安全至关重要,但基于人工检查的传统植物监测方法劳动强度大,且往往不足以早期发现压力源和疾病,也无法及时进行主动干预。为应对这一挑战,我们提出了一个基于深度学习的框架,用于使用连续RGB图像进行专家级的时空植物健康评估。我们的方法根据在整个种植周期中观察到的视觉和形态指标,将植物健康分为五个等级,从非常差到最佳。为验证该方法,我们收集了一个自定义数据集,包含来自三个品种的200株番茄植物的12119张标注图像,这些植物在一年内的多个种植季节中种植于半开放式温室中。该框架利用最先进的卷积神经网络(CNN)和变压器架构来做出准确的、特定阶段的健康预测。这些预测与专家标注高度一致,证明了该模型在跟踪植物健康进展方面的可靠性。此外,该系统能够生成动态种植地图,用于持续监测和早期干预,支持数据驱动的作物管理。总体而言,研究结果凸显了该框架通过可扩展的自动化植物健康监测推进精准农业的潜力,这种监测以对影响作物健康的关键视觉指标和压力源的理解为指导,贯穿整个种植期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验