文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

临床决策支持中的人工智能与不良事件预测

Artificial intelligence in clinical decision support and the prediction of adverse events.

作者信息

Oei S P, Bakkes T H G F, Mischi M, Bouwman R A, van Sloun R J G, Turco S

机构信息

Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.

Anesthesiology, Catharina Hospital, Eindhoven, Netherlands.

出版信息

Front Digit Health. 2025 May 30;7:1403047. doi: 10.3389/fdgth.2025.1403047. eCollection 2025.


DOI:10.3389/fdgth.2025.1403047
PMID:40520218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12162700/
Abstract

This review focuses on integrating artificial intelligence (AI) into healthcare, particularly for predicting adverse events, which holds potential in clinical decision support (CDS) but also presents significant challenges. Biases in data acquisition, such as population shifts and data scarcity, threaten the generalizability of AI-based CDS algorithms across different healthcare centers. Techniques like resampling and data augmentation are crucial for addressing biases, along with external validation to mitigate population bias. Moreover, biases can emerge during AI training, leading to underfitting or overfitting, necessitating regularization techniques for balancing model complexity and generalizability. The lack of interpretability in AI models poses trust and transparency issues, advocating for transparent algorithms and requiring rigorous testing on specific hospital populations before implementation. Additionally, emphasizing human judgment alongside AI integration is essential to mitigate the risks of deskilling healthcare practitioners. Ongoing evaluation processes and adjustments to regulatory frameworks are crucial for ensuring the ethical, safe, and effective use of AI in CDS, highlighting the need for meticulous attention to data quality, preprocessing, model training, interpretability, and ethical considerations.

摘要

本综述聚焦于将人工智能(AI)整合到医疗保健领域,尤其是用于预测不良事件,这在临床决策支持(CDS)中具有潜力,但也带来了重大挑战。数据获取中的偏差,如人群变化和数据稀缺,威胁着基于AI的CDS算法在不同医疗中心的通用性。重采样和数据增强等技术对于解决偏差至关重要,同时还需要外部验证来减轻人群偏差。此外,AI训练过程中可能会出现偏差,导致欠拟合或过拟合,因此需要正则化技术来平衡模型复杂性和通用性。AI模型缺乏可解释性带来了信任和透明度问题,主张采用透明算法,并要求在实施前对特定医院人群进行严格测试。此外,在整合AI的同时强调人类判断对于减轻医疗从业者技能退化的风险至关重要。持续的评估过程和对监管框架的调整对于确保在CDS中道德、安全且有效地使用AI至关重要,这突出了对数据质量、预处理、模型训练、可解释性和伦理考量予以细致关注的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5341/12162700/34259ae5239c/fdgth-07-1403047-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5341/12162700/34259ae5239c/fdgth-07-1403047-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5341/12162700/34259ae5239c/fdgth-07-1403047-g001.jpg

相似文献

[1]
Artificial intelligence in clinical decision support and the prediction of adverse events.

Front Digit Health. 2025-5-30

[2]
Data stewardship and curation practices in AI-based genomics and automated microscopy image analysis for high-throughput screening studies: promoting robust and ethical AI applications.

Hum Genomics. 2025-2-23

[3]
Toward a responsible future: recommendations for AI-enabled clinical decision support.

J Am Med Inform Assoc. 2024-11-1

[4]
From black box to clarity: Strategies for effective AI informed consent in healthcare.

Artif Intell Med. 2025-5-24

[5]
Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations.

Med Hypothesis Discov Innov Ophthalmol. 2025-5-10

[6]
Artificial intelligence in hospital infection prevention: an integrative review.

Front Public Health. 2025-4-2

[7]
Artificial Intelligence in Aesthetic Medicine: Applications, Challenges, and Future Directions.

J Cosmet Dermatol. 2025-6

[8]
Responsible AI for cardiovascular disease detection: Towards a privacy-preserving and interpretable model.

Comput Methods Programs Biomed. 2024-9

[9]
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.

Cureus. 2023-8-10

[10]
Integrating Artificial Intelligence (AI) With Workforce Solutions for Sustainable Care: A Follow Up to Artificial Intelligence and Machine Learning (ML) Based Decision Support Systems in Mental Health.

Int J Ment Health Nurs. 2025-4

本文引用的文献

[1]
Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review.

J Am Med Inform Assoc. 2023-4-19

[2]
Utopia versus dystopia: Professional perspectives on the impact of healthcare artificial intelligence on clinical roles and skills.

Int J Med Inform. 2023-1

[3]
The effects of clinical decision support system for prescribing medication on patient outcomes and physician practice performance: a systematic review and meta-analysis.

BMC Med Inform Decis Mak. 2021-3-10

[4]
Automated Identification of Adults at Risk for In-Hospital Clinical Deterioration.

N Engl J Med. 2020-11-12

[5]
A machine learning method for automatic detection and classification of patient-ventilator asynchrony.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[6]
Paracetamol - An old drug with new mechanisms of action.

Clin Exp Pharmacol Physiol. 2021-1

[7]
Causality matters in medical imaging.

Nat Commun. 2020-7-22

[8]
Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology.

BMJ. 2020-5-20

[9]
Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine.

Radiol Bras. 2019

[10]
Integrating artificial intelligence into health care through data access: can the GDPR act as a beacon for policymakers?

J Law Biosci. 2019-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索