Sheikh Sofia, Vela Brent, Honarmandi Pejman, Morcos Peter, Shoukr David, Kotb Abdelrahman Mostafa, Karaman Ibrahim, Elwany Alaa, Arróyave Raymundo
Department of Materials Science and Engineering, Texas A&M University, College Station, TX USA.
Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX USA.
NPJ Comput Mater. 2025;11(1):179. doi: 10.1038/s41524-025-01670-x. Epub 2025 Jun 12.
Many engineering alloys originally designed for conventional manufacturing lack considerations for additive manufacturing (AM), presenting opportunities for novel alloy designs. Evaluating alloy printability requires extensive analysis of chemical composition and processing conditions. The complexity of experimental exploration drives the need for high-throughput computational frameworks. This study introduces a framework that integrates material properties, processing parameters, and melt pool profiles from three thermal models to assess process-induced defects, such as lack-of-fusion, balling, and keyholing. A deep learning surrogate model accelerates the printability assessment by 1000 times without losing accuracy. We validate the framework with printability maps for the equiatomic CoCrFeMnNi system and apply it to explore printable alloys in the Co-Cr-Fe-Mn-Ni high-entropy alloy space. Ensemble probabilistic printability maps further provide insights into defect likelihood and uncertainty, enhancing alloy design for AM by efficiently navigating vast design spaces.
许多最初为传统制造设计的工程合金缺乏对增材制造(AM)的考虑,这为新型合金设计提供了机会。评估合金的可打印性需要对化学成分和加工条件进行广泛分析。实验探索的复杂性推动了对高通量计算框架的需求。本研究引入了一个框架,该框架整合了来自三个热模型的材料属性、加工参数和熔池轮廓,以评估工艺引起的缺陷,如未熔合、球化和匙孔效应。一个深度学习代理模型在不损失准确性的情况下将可打印性评估加速了1000倍。我们用等原子CoCrFeMnNi体系的可打印性图验证了该框架,并将其应用于探索Co-Cr-Fe-Mn-Ni高熵合金空间中的可打印合金。集成概率可打印性图进一步提供了关于缺陷可能性和不确定性的见解,通过有效导航广阔的设计空间增强了用于增材制造的合金设计。