Suppr超能文献

基于台阶试验中的运动和身体参数建立最大摄氧量预测模型。

Establish VOmax prediction models based on exercise and body parameters from the step test.

作者信息

Ho Chia-An, Yeh Hung-Chih, Lau Hei-Tung, Chang En-Yu, Hsu Chih-Wen, Chang Chun-Hao, Huang Chi-Chang, Chien Wen-Sheng Chang, Ho Chin-Shan

机构信息

Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan.

出版信息

Int J Med Sci. 2025 May 28;22(11):2676-2685. doi: 10.7150/ijms.109977. eCollection 2025.

Abstract

This study addresses the challenge of cardiorespiratory fitness (CRF) assessment by proposing predictive models for maximal oxygen uptake (VO₂max) based on step test parameters. Recognizing VO₂max as a gold standard for CRF evaluation, this study aims to develop a VO₂max prediction model based on a step test, providing a simple and practical alternative for primary healthcare and health monitoring. This model enables clinicians and health management professionals to efficiently assess patients' cardiorespiratory fitness. Through the recruitment of 200 healthy Taiwanese adults, the research combined direct VO₂max measurements with step test heart rate (HR) data and variables like age, sex, percentage body fat (PBF), body mass index (BMI), and resting heart rate (RHR) to develop six predictive models. This method is applicable for clinical health monitoring, cardiorespiratory fitness assessment in patients with chronic diseases, and exercise capacity monitoring in cardiac rehabilitation programs. The study identified that PBF-based models consistently outperformed BMI-based ones, with Model, which incorporates HR responses during exercise, achieving the highest accuracy (R² = 0.689; SEE = 4.6971 ml·kg⁻¹·min⁻¹). These results indicate that the model can effectively estimate VO₂max and be applied in primary healthcare, remote health monitoring, and cardiac rehabilitation settings, providing a simple and practical tool for cardiorespiratory fitness assessment in clinical practice. Validation via PRESS cross-validation and Bland-Altman plots confirmed the stability and reliability of the models across diverse subgroups. By bridging the gap between laboratory-grade precision and everyday practicality, the study introduces a robust, low-cost, and user-friendly tool for CRF assessment, adaptable for non-athletes and those unable to perform high-intensity exercises. This research advances the feasibility of CRF self-management in varied settings, while future iterations could extend its applicability to broader demographics and integrate additional physiological variables for universal adoption.

摘要

本研究通过基于台阶试验参数提出最大摄氧量(VO₂max)的预测模型,应对心肺适能(CRF)评估的挑战。认识到VO₂max是CRF评估的金标准,本研究旨在开发基于台阶试验的VO₂max预测模型,为初级医疗保健和健康监测提供一种简单实用的替代方法。该模型使临床医生和健康管理专业人员能够有效地评估患者的心肺适能。通过招募200名健康的台湾成年人,该研究将直接测量的VO₂max与台阶试验心率(HR)数据以及年龄、性别、体脂百分比(PBF)、体重指数(BMI)和静息心率(RHR)等变量相结合,开发了六个预测模型。该方法适用于临床健康监测、慢性病患者的心肺适能评估以及心脏康复项目中的运动能力监测。研究发现,基于PBF的模型始终优于基于BMI的模型,其中纳入运动期间HR反应的模型准确性最高(R² = 0.689;SEE = 4.6971 ml·kg⁻¹·min⁻¹)。这些结果表明,该模型可以有效地估计VO₂max,并应用于初级医疗保健、远程健康监测和心脏康复环境中,为临床实践中的心肺适能评估提供一种简单实用的工具。通过PRESS交叉验证和Bland-Altman图进行的验证证实了模型在不同亚组中的稳定性和可靠性。通过弥合实验室级精度与日常实用性之间的差距,该研究引入了一种强大、低成本且用户友好的CRF评估工具,适用于非运动员和无法进行高强度运动的人群。这项研究提高了CRF在不同环境中自我管理的可行性,而未来的迭代可以将其适用性扩展到更广泛的人群,并整合更多生理变量以实现普遍应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8b1/12163378/c859336f7612/ijmsv22p2676g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验