Hyun Subong, Lee Seoyoung, Choi Ilwong, Shin Choul Woo, Cho Seungryong
KAIST, Department of Nuclear and Quantum Engineering, Daejeon, Republic of Korea.
DRTECH Corp., Research & Development Center, Seongnam, Republic of Korea.
J Med Imaging (Bellingham). 2025 Nov;12(Suppl 2):S22008. doi: 10.1117/1.JMI.12.S2.S22008. Epub 2025 Jun 12.
Various deep learning (DL) approaches have been developed for estimating scatter radiation in digital breast tomosynthesis (DBT). Existing DL methods generally employ an end-to-end training approach, overlooking the underlying physics of scatter formation. We propose a deep learning approach inspired by asymmetric scatter kernel superposition to estimate scatter in DBT.
We use the network to generate the scatter amplitude distribution as well as the scatter kernel width and asymmetric factor map. To account for variations in local breast thickness and shape in DBT projection data, we integrated the Euclidean distance map and projection angle information into the network design for estimating the asymmetric factor.
Systematic experiments on numerical phantom data and physical experimental data demonstrated the outperformance of the proposed approach to UNet-based end-to-end scatter estimation and symmetric kernel-based approaches in terms of signal-to-noise ratio and structure similarity index measure of the resulting scatter corrected images.
The proposed method is believed to have achieved significant advancement in scatter estimation of DBT projections, allowing a robust and reliable physics-informed scatter correction.
已开发出多种深度学习(DL)方法用于估计数字乳腺断层合成(DBT)中的散射辐射。现有的DL方法通常采用端到端训练方法,而忽略了散射形成的潜在物理原理。我们提出一种受不对称散射核叠加启发的深度学习方法来估计DBT中的散射。
我们使用该网络生成散射幅度分布以及散射核宽度和不对称因子图。为了考虑DBT投影数据中局部乳房厚度和形状的变化,我们将欧几里得距离图和投影角度信息集成到网络设计中以估计不对称因子。
在数值体模数据和物理实验数据上进行的系统实验表明,在所得散射校正图像的信噪比和结构相似性指数测量方面,所提出的方法优于基于U-Net的端到端散射估计方法和基于对称核的方法。
据信所提出的方法在DBT投影的散射估计方面取得了显著进展,可实现强大且可靠的基于物理的散射校正。