Suppr超能文献

使用深度卷积神经网络(DeepLab)架构进行自动驾驶语义分割的见解。

Insights of semantic segmentation using the DeepLab architecture for autonomous driving.

作者信息

Subhedar Javed, Bachute Mrinal R

机构信息

Department of Electronics and Telecommunication Symbiosis Institute of Technology, Pune, India.

出版信息

MethodsX. 2025 May 23;14:103387. doi: 10.1016/j.mex.2025.103387. eCollection 2025 Jun.

Abstract

One of the critical tasks of autonomous driving systems is the Perception task (detecting the surroundings), which involves semantic Segmentation. The vital computer vision task of semantic segmentation assigns a "label" to every pixel in the input image. "Semantic segmentation" task consists of partitioning scenes as seen by the Autonomous Vehicle into several communicative slices by categorizing and labelling all image pixel for semantics. This paper gives insights into DeepNet V3 + architecture with ResNet50V2 as the backbone and the other as EfficientNetv2 backbone for feature extraction. The impact of the Squeeze and Excitation module and the Convolutional Block Attention Module is also compared for these architectures for semantic segmentation using the CAMVid data set. All six models are evaluated for Categorical Accuracy and mIoU metrics. The maximum Categorical Accuracy of 97.25 % was achieved in the model ResNet50V2 as the backbone and the Mean IoU of 80.56 %•Feature extraction using DeepNet V3 + architecture with ResNet50V2 and EfficientNetv2 as the backbone.•Insights of using the Squeeze and Excitation and Convolutional Block Attention Module for the DeepNet V3 + architecture.

摘要

自动驾驶系统的关键任务之一是感知任务(检测周围环境),这涉及语义分割。语义分割这项重要的计算机视觉任务会为输入图像中的每个像素分配一个“标签”。“语义分割”任务包括通过对所有图像像素进行语义分类和标记,将自动驾驶车辆所看到的场景划分为几个可交流的部分。本文深入探讨了以ResNet50V2为骨干以及以EfficientNetv2为骨干进行特征提取的DeepNet V3 +架构。还针对这些用于语义分割的架构,比较了挤压与激励模块和卷积块注意力模块的影响,使用的是CAMVid数据集。所有六个模型都针对分类准确率和平均交并比指标进行了评估。以ResNet50V2为骨干的模型实现了97.25%的最高分类准确率,平均交并比为80.56%。

• 使用以ResNet50V2和EfficientNetv2为骨干的DeepNet V3 +架构进行特征提取。

• 对DeepNet V3 +架构使用挤压与激励模块和卷积块注意力模块的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98b0/12166448/ff1bd2deafe6/ga1.jpg

相似文献

1
Insights of semantic segmentation using the DeepLab architecture for autonomous driving.
MethodsX. 2025 May 23;14:103387. doi: 10.1016/j.mex.2025.103387. eCollection 2025 Jun.
2
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
3
An Improved DeepLab v3+ Deep Learning Network Applied to the Segmentation of Grape Leaf Black Rot Spots.
Front Plant Sci. 2022 Feb 15;13:795410. doi: 10.3389/fpls.2022.795410. eCollection 2022.
5
An ENet Semantic Segmentation Method Combined with Attention Mechanism.
Comput Intell Neurosci. 2023 Feb 22;2023:6965259. doi: 10.1155/2023/6965259. eCollection 2023.
6
A lightweight multi-dimension dynamic convolutional network for real-time semantic segmentation.
Front Neurorobot. 2022 Dec 15;16:1075520. doi: 10.3389/fnbot.2022.1075520. eCollection 2022.
7
Based on cross-scale fusion attention mechanism network for semantic segmentation for street scenes.
Front Neurorobot. 2023 Aug 31;17:1204418. doi: 10.3389/fnbot.2023.1204418. eCollection 2023.
9
Semantic segmentation of autonomous driving scenes based on multi-scale adaptive attention mechanism.
Front Neurosci. 2023 Oct 19;17:1291674. doi: 10.3389/fnins.2023.1291674. eCollection 2023.
10
Efficient attention-based deep encoder and decoder for automatic crack segmentation.
Struct Health Monit. 2022 Sep;21(5):2190-2205. doi: 10.1177/14759217211053776. Epub 2021 Dec 19.

本文引用的文献

1
Automated segmentation of epidermis in high-frequency ultrasound of pathological skin using a cascade of DeepLab v3+ networks and fuzzy connectedness.
Comput Med Imaging Graph. 2022 Jan;95:102023. doi: 10.1016/j.compmedimag.2021.102023. Epub 2021 Dec 2.
2
Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural network.
Comput Methods Programs Biomed. 2021 Aug;207:106210. doi: 10.1016/j.cmpb.2021.106210. Epub 2021 May 29.
3
Squeeze-and-Excitation Networks.
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.
4
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.
5
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验