Suppr超能文献

使用级联深度卷积神经网络(DeepLab v3+)和模糊连接性对病理性皮肤高频超声中的表皮进行自动分割。

Automated segmentation of epidermis in high-frequency ultrasound of pathological skin using a cascade of DeepLab v3+ networks and fuzzy connectedness.

作者信息

Czajkowska Joanna, Badura Pawel, Korzekwa Szymon, Płatkowska-Szczerek Anna

机构信息

Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

出版信息

Comput Med Imaging Graph. 2022 Jan;95:102023. doi: 10.1016/j.compmedimag.2021.102023. Epub 2021 Dec 2.

Abstract

This study proposes a novel, fully automated framework for epidermal layer segmentation in different skin diseases based on 75 MHz high-frequency ultrasound (HFUS) image data. A robust epidermis segmentation is a vital first step to detect changes in thickness, shape, and intensity and therefore support diagnosis and treatment monitoring in inflammatory and neoplastic skin lesions. Our framework links deep learning and fuzzy connectedness for image analysis. It consists of a cascade of two DeepLab v3+ models with a ResNet-50 backbone and a fuzzy connectedness analysis module for fine segmentation. Both deep models are pre-trained on the ImageNet dataset and subjected to transfer learning using our HFUS database of 580 images with atopic dermatitis, psoriasis and non-melanocytic skin tumors. The first deep model is used to detect the appropriate region of interest, while the second stands for the main segmentation procedure. We use the softmax layer of the latter twofold to prepare the input data for fuzzy connectedness analysis: as a reservoir of seed points and a direct contribution to the input image. In the experiments, we analyze different configurations of the framework, including region of interest detection, deep model backbones and training loss functions, or fuzzy connectedness analysis with parameter settings. We also use the Dice index and epidermis thickness to compare our results to state-of-the-art approaches. The Dice index of 0.919 yielded by our model over the entire dataset (and exceeding 0.93 in inflammatory diseases) proves its superiority over the other methods.

摘要

本研究基于75兆赫高频超声(HFUS)图像数据,提出了一种用于不同皮肤疾病表皮层分割的全新全自动框架。稳健的表皮分割是检测厚度、形状和强度变化的关键第一步,从而有助于炎症性和肿瘤性皮肤病变的诊断及治疗监测。我们的框架将深度学习与模糊连接性相结合用于图像分析。它由两个带有ResNet-50主干的DeepLab v3+模型级联以及一个用于精细分割的模糊连接性分析模块组成。这两个深度模型均在ImageNet数据集上进行预训练,并使用我们包含580张特应性皮炎、银屑病和非黑素细胞性皮肤肿瘤的HFUS数据库进行迁移学习。第一个深度模型用于检测合适的感兴趣区域,而第二个则用于主要的分割过程。我们使用后一个模型的softmax层为模糊连接性分析准备输入数据:作为种子点库并直接作用于输入图像。在实验中,我们分析了框架的不同配置,包括感兴趣区域检测、深度模型主干和训练损失函数,以及带有参数设置的模糊连接性分析。我们还使用Dice指数和表皮厚度将我们的结果与现有最佳方法进行比较。我们的模型在整个数据集上产生的Dice指数为0.919(在炎症性疾病中超过0.93),证明了其相对于其他方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验