Asgarkhanova Farah, Gilles Marcou, Volkov Mikhail, Muzard Murielle, Plantier-Royon Richard, Rémond Caroline, Horvath Dragos, Varnek Alexandre
Laboratory of Chemoinformatics, UMR 7140, University of Strasbourg, Strasbourg, France.
Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France.
Mol Inform. 2025 Jun;44(5-6):e2500045. doi: 10.1002/minf.202500045.
The Spherical Generative Topographic Mapping (SGTM) method represents an intuitive approach to visualize chemical data. Unlike the original Generative Topographic Mapping algorithm, which utilizes a bounded flat Euclidean space as a manifold, our proposed modification introduces a spherical manifold to address known nonflat topology issues. In this study, we describe the mathematical formalism of this new approach and showcase its ability to visualize 2D electron density patterns of water and benzene and the CosMoPoly chemical library-an enumeration of synthetically accessible molecules. By comparing the outcomes with established references, it is demonstrated that SGTM emerges as a novel 3D data visualization method, offering improved accuracy in the depiction of chemical structures.
球形生成地形映射(SGTM)方法是一种直观的化学数据可视化方法。与原始的生成地形映射算法不同,原始算法利用有界的平坦欧几里得空间作为流形,而我们提出的改进方法引入了球形流形来解决已知的非平坦拓扑问题。在本研究中,我们描述了这种新方法的数学形式,并展示了它可视化水和苯的二维电子密度模式以及CosMoPoly化学库(一组可通过合成获得的分子枚举)的能力。通过将结果与已有的参考文献进行比较,证明SGTM是一种新颖的三维数据可视化方法,在化学结构描绘方面具有更高的准确性。