文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

幼虫外部感觉器官的形态学与超微结构

Morphology and ultrastructure of external sense organs of larvae.

作者信息

Richter Vincent, Rist Anna, Kislinger Georg, Laumann Michael, Schoofs Andreas, Miroschnikow Anton, Pankratz Michael J, Cardona Albert, Thum Andreas S

机构信息

Department of Genetics, Leipzig University, Institute for Biology, Leipzig, Germany.

Department of Biology, University of Konstanz, Konstanz, Germany.

出版信息

Elife. 2025 Jun 16;12:RP91155. doi: 10.7554/eLife.91155.


DOI:10.7554/eLife.91155
PMID:40522083
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12169854/
Abstract

Sensory perception is the ability through which an organism is able to process sensory stimuli from the environment. This stimulus is transmitted from the peripheral sensory organs to the central nervous system, where it is interpreted. larvae possess peripheral sense organs on their head, thoracic, and abdominal segments. These are specialized to receive diverse environmental information, such as olfactory, gustatory, temperature, or mechanosensory signals. In this work, we complete the description of the morphology of external larval sensilla and provide a comprehensive map of the ultrastructure of the different types of sensilla that comprise them. This was achieved by 3D electron microscopic analysis of partial and whole body volumes, which contain high-resolution and complete three-dimensional data of the anatomy of the sensilla and adjacent ganglia. Our analysis revealed three main types of sensilla on thoracic and abdominal segments: the papilla sensillum, the hair sensillum, and the knob sensillum. They occur solitary or organized in compound sensilla such as the thoracic keilin's organ or the terminal sensory cones. We present a spatial map defining these sensilla by their position on thoracic and abdominal segments. Furthermore, we identify and name the sensilla at the larval head and the last fused abdominal segments. We show that mechanosensation dominates in the larval peripheral nervous system, as most sensilla have corresponding structural properties. The result of this work, the construction of a complete structural and neuronal map of the external larval sensilla, provides the basis for following molecular and functional studies to understand which sensory strategies the larva employs to orient itself in its natural environment.

摘要

感觉知觉是生物体能够处理来自环境的感觉刺激的能力。这种刺激从外周感觉器官传递到中枢神经系统,并在那里进行解释。幼虫在其头部、胸部和腹部节段拥有外周感觉器官。这些器官专门用于接收各种环境信息,如嗅觉、味觉、温度或机械感觉信号。在这项工作中,我们完成了幼虫外部感器形态的描述,并提供了构成这些感器的不同类型感器超微结构的综合图谱。这是通过对部分和全身体积进行三维电子显微镜分析实现的,该分析包含了感器和相邻神经节解剖结构的高分辨率和完整三维数据。我们的分析揭示了胸部和腹部节段上的三种主要感器类型:乳头状感器、毛状感器和瘤状感器。它们单独出现或组织成复合感器,如胸部的凯林氏器官或末端感觉锥。我们展示了一张空间图谱,通过它们在胸部和腹部节段上的位置来定义这些感器。此外,我们识别并命名了幼虫头部和最后融合腹部节段的感器。我们表明,机械感觉在幼虫外周神经系统中占主导地位,因为大多数感器具有相应的结构特性。这项工作的结果,即构建幼虫外部感器的完整结构和神经元图谱,为后续的分子和功能研究提供了基础,以了解幼虫在自然环境中采用哪些感觉策略来定位自己。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/44f2b9cda6c7/elife-91155-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/5e59a97a699e/elife-91155-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/2f9bae74e1bd/elife-91155-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/e5e5e9c2dcfb/elife-91155-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/71719f61e20a/elife-91155-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/09260b9b5e67/elife-91155-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/60a6b2325da8/elife-91155-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/6035fb3ed626/elife-91155-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/ccac1c1f5c7c/elife-91155-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/0391b38eb313/elife-91155-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/84d6d92f275b/elife-91155-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/70213585a02e/elife-91155-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/0850f7fa38ed/elife-91155-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/213b7fb1c0d9/elife-91155-fig11-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/ad2a9d32c196/elife-91155-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/c857e66ca2a9/elife-91155-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/5d197738e49c/elife-91155-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/b107d9c763ce/elife-91155-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/6afe62a14ec5/elife-91155-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/29bb02f81424/elife-91155-fig16-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/9d5690454bf6/elife-91155-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/44f2b9cda6c7/elife-91155-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/5e59a97a699e/elife-91155-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/2f9bae74e1bd/elife-91155-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/e5e5e9c2dcfb/elife-91155-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/71719f61e20a/elife-91155-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/09260b9b5e67/elife-91155-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/60a6b2325da8/elife-91155-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/6035fb3ed626/elife-91155-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/ccac1c1f5c7c/elife-91155-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/0391b38eb313/elife-91155-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/84d6d92f275b/elife-91155-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/70213585a02e/elife-91155-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/0850f7fa38ed/elife-91155-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/213b7fb1c0d9/elife-91155-fig11-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/ad2a9d32c196/elife-91155-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/c857e66ca2a9/elife-91155-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/5d197738e49c/elife-91155-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/b107d9c763ce/elife-91155-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/6afe62a14ec5/elife-91155-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/29bb02f81424/elife-91155-fig16-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/9d5690454bf6/elife-91155-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c6/12169854/44f2b9cda6c7/elife-91155-fig18.jpg

相似文献

[1]
Morphology and ultrastructure of external sense organs of larvae.

Elife. 2025-6-16

[2]
A map of sensilla and neurons in the taste system of drosophila larvae.

J Comp Neurol. 2017-12-15

[3]
The molecular and cellular basis of taste coding in the legs of Drosophila.

J Neurosci. 2014-5-21

[4]
Cuticular sensilla on newly hatched larvae of Gasterophilus intestinalis and Oestrus ovis.

Med Vet Entomol. 1995-1

[5]
The organization of the chemosensory system in Drosophila melanogaster: a review.

Cell Tissue Res. 1994-1

[6]
Sensing the underground--ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae.

PLoS One. 2012-7-25

[7]
From embryo to adult: anatomy and development of a leg sensory organ in Phormia regina Meigen (Insecta: Diptera). I. Anatomy and physiology of a larval "leg" sensory organ.

J Comp Neurol. 1991-6-8

[8]
Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila.

Genes Cells. 1997-3

[9]
The sensory equipment of a spider - A morphological survey of different types of sensillum in both sexes of Argiope bruennichi (Araneae, Araneidae).

Arthropod Struct Dev. 2018-3

[10]
Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2.

Cell Tissue Res. 2001-6

本文引用的文献

[1]
Whole-brain annotation and multi-connectome cell typing of Drosophila.

Nature. 2024-10

[2]
Serotonergic modulation of swallowing in a complete fly vagus nerve connectome.

Curr Biol. 2024-10-7

[3]
The connectome of an insect brain.

Science. 2023-3-10

[4]
Functional Interaction Between Olfactory Sensory Neurons and Their Support Cells.

Front Cell Neurosci. 2022-1-7

[5]
Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis.

Sci Adv. 2021-8-27

[6]
Systematic morphological and morphometric analysis of identified olfactory receptor neurons in .

Elife. 2021-8-23

[7]
Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in .

Elife. 2021-6-4

[8]
A connectome and analysis of the adult central brain.

Elife. 2020-9-7

[9]
Recurrent architecture for adaptive regulation of learning in the insect brain.

Nat Neurosci. 2020-3-23

[10]
Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila.

PLoS Genet. 2020-2-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索