Tashkandi Jurie, Brkljača Robert, Zhang Marie, Hagemeyer Christoph E, Alt Karen
Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne 3004, Australia.
Monash Biomedical Imaging, Monash University, Melbourne 3168, Australia.
Nanoscale. 2025 Jul 3;17(26):15815-15828. doi: 10.1039/d5nr00608b.
Molecular imaging of cancer is a rapidly growing field given the enhanced specificity of disease detection it can achieve. As a radiation-free tomographic instrument, magnetic particle imaging (MPI) continues to demonstrate its effectiveness in molecular imaging. However, a long-standing issue within nanomedicine for tumor detection is the sparse uptake of superparamagnetic iron oxide nanoparticles (SPIONs) at the tumor site, thereby limiting its detection by MPI. To support achieving the full potential of MPI, SPION properties must be carefully modified for each application. The SPIONs size, magnetization, and surface coating impacts its biodistribution, tumor specificity and accumulation thereby influencing the generated MPI signal. Here we compare commercially available PrecisionMRX SPIONs in three coatings: a carboxylic acid functionalized SPION, a methoxypolyethylene glycol functionalized SPION and a Trastuzumab conjugated SPION. Our results demonstrated the influence SPION modifications have on magnetic relaxation and therefore the MPI sensitivity of the tracer. Modification of SPIONs also impacted their blood circulation time, inherently the carboxylic acid SPION cleared almost immediately from circulation, while the methoxypolyethylene glycol SPION displayed exceptional immune evasion and remained in the blood pool for over 6 hours. In a xenograft ovarian cancer mouse model, we achieved significant tumor uptake of the SPION through intravenous delivery and accurately quantified the iron amount both and using MPI and ICP-MS. This study furthers our understanding of SPION behavior in MPI and continues the exploration for a safe and potent tumor imaging strategy, presenting a powerful, biocompatible SPION platform that holds immense potential for the future of MPI.
鉴于癌症分子成像能够实现更高的疾病检测特异性,它是一个快速发展的领域。作为一种无辐射断层成像仪器,磁粒子成像(MPI)在分子成像中持续展现出其有效性。然而,纳米医学中肿瘤检测的一个长期问题是超顺磁性氧化铁纳米颗粒(SPIONs)在肿瘤部位摄取稀少,从而限制了其通过MPI进行检测。为了充分发挥MPI的潜力,必须针对每个应用仔细调整SPION的特性。SPION的尺寸、磁化强度和表面涂层会影响其生物分布、肿瘤特异性和积累,进而影响所产生的MPI信号。在此,我们比较了三种涂层的市售PrecisionMRX SPIONs:一种羧酸功能化SPION、一种甲氧基聚乙二醇功能化SPION和一种曲妥珠单抗偶联SPION。我们的结果证明了SPION修饰对磁弛豫的影响,进而对示踪剂的MPI灵敏度产生影响。SPION的修饰还影响了它们的血液循环时间,羧酸SPION几乎立即从循环中清除,而甲氧基聚乙二醇SPION表现出卓越的免疫逃逸能力,在血池中停留超过6小时。在异种移植卵巢癌小鼠模型中,我们通过静脉注射实现了SPION在肿瘤中的显著摄取,并使用MPI和电感耦合等离子体质谱准确量化了铁含量。这项研究加深了我们对SPION在MPI中行为的理解,并继续探索一种安全有效的肿瘤成像策略,提出了一个强大的、生物相容性良好的SPION平台,该平台在MPI的未来具有巨大潜力。