Suppr超能文献

拓扑材料中的热电子学。

Thermionics in Topological Materials.

作者信息

Huang Sunchao, Zhang Zihao, Yang Youfeng, Zheng Yuan, Al-Mamun Abdullah, Wang Shaomeng, Li Zhi, Gong Yubin, Zhang Chao

机构信息

School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.

School of Physics and Institute for Superconducting and Electronic materials, University of Wollongong, New South Wales, 2522, Australia.

出版信息

Adv Mater. 2025 Sep;37(36):e2505619. doi: 10.1002/adma.202505619. Epub 2025 Jun 16.

Abstract

Thermionic emission is fundamental to many technologies and devices, including thermionic energy converters, X-ray tubes, scanning electron microscopes, and transmission electron microscopes. The discovery of topological materials, particularly graphene, has significantly advanced thermionics research. Thermionic emission in these materials deviates from the Richardson-Dushman equation due to their linear energy dispersion. Various models are developed to accurately describe thermionic emission. Graphene, with its dangling bond-free surface, can be stacked either vertically or laterally with materials to form heterostructures. The Schottky barrier height at the interface of heterostructures can be tuned from a few millielectronvolts to several electronvolts by selecting appropriate materials or adjusting the Fermi level of graphene. This low and tunable barrier height gives rise to a great potential in developing thermionic energy converters and photodetectors. While free-standing single-layer graphene exhibits high electron mobility, its thermionic emission capability is constrained by the low density of states. This constraint can be alleviated by using 3D Dirac materials, which also possess linear energy dispersion. Thermionic emission in 3D Dirac materials is further enhanced by the emergence of nodal-ring semimetals and Weyl semimetals that exhibit linear-like energy dispersion. This review highlights recent progress in thermionic emission and devices in graphene structures and other topological materials.

摘要

热电子发射对于包括热电子能量转换器、X射线管、扫描电子显微镜和透射电子显微镜在内的许多技术和设备来说至关重要。拓扑材料的发现,尤其是石墨烯的发现,极大地推动了热离子学研究。由于这些材料的线性能量色散,它们中的热电子发射偏离了理查森 - 杜什曼方程。人们开发了各种模型来准确描述热电子发射。石墨烯具有无悬空键的表面,可以与材料垂直或横向堆叠以形成异质结构。通过选择合适的材料或调整石墨烯的费米能级,异质结构界面处的肖特基势垒高度可以从几毫电子伏特调整到几电子伏特。这种低且可调节的势垒高度在开发热电子能量转换器和光电探测器方面具有巨大潜力。虽然独立的单层石墨烯表现出高电子迁移率,但其热电子发射能力受到低态密度的限制。使用同样具有线性能量色散的三维狄拉克材料可以缓解这种限制。节点环半金属和外尔半金属的出现进一步增强了三维狄拉克材料中的热电子发射,这些材料表现出线状的能量色散。本综述重点介绍了石墨烯结构和其他拓扑材料中热电子发射及相关器件的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/743c/12422092/1c32dfac1675/ADMA-37-2505619-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验