Oliullah Khondokar, Whaiduzzaman Md, Mahi Md Julkar Nayeen, Jan Tony, Barros Alistair
Department of Information and Communication Technology, Comilla University, Cumilla, Bangladesh.
Institute of Information Technology, Jahangirnagar University, Dhaka, Bangladesh.
PLoS One. 2025 Jun 16;20(6):e0323954. doi: 10.1371/journal.pone.0323954. eCollection 2025.
Authentication is a critical challenge in fog computing security, especially as fog servers provide services to many IoT users. The conventional authentication process often requires disclosing sensitive personal information, such as usernames, emails, mobile numbers, and passwords that end users are reluctant to share with intermediary services (i.e., Fog servers). With the rapid growth of IoT networks, existing authentication methods often fail to balance low computational overhead with strong security, leaving systems vulnerable to various attacks, including unauthorized access and data interception. Additionally, traditional intrusion detection methods are not well-suited for the distinct characteristics of IoT devices, resulting in a low accuracy in applying existing anomaly detection methods. In this paper, we incorporate a two-step authentication process, starting with anonymous authentication using a secret ID with Elliptic Curve Cryptography (ECC), followed by an intrusion detection algorithm for users flagged as suspicious activity. The scheme allows users to register with a Cloud Service Provider (CSP) using encrypted credentials. The CSP responds with a secret number reserved in the Fog node for the IoT user. To access the services provided by the Fog Service Provider (FSP), IoT users must submit a secret ID. Furthermore, we introduce a staked ensemble learning approach for intrusion detection that achieves 99.86% accuracy, 99.89% precision, 99.96% recall, and a 99.91% F1-score in detecting anomalous instances, with a support count of 50,376. This approach is applied when users fail to provide a correct secret ID. Our proposed scheme utilizes several hash functions through symmetric encryption and decryption techniques to ensure secure end-to-end communication.
认证是雾计算安全中的一项关键挑战,尤其是当雾服务器为众多物联网用户提供服务时。传统的认证过程通常需要披露敏感的个人信息,如用户名、电子邮件、手机号码和密码,而终端用户不愿与中介服务(即雾服务器)分享这些信息。随着物联网网络的快速增长,现有的认证方法往往无法在低计算开销和强安全性之间取得平衡,从而使系统容易受到各种攻击,包括未经授权的访问和数据拦截。此外,传统的入侵检测方法不太适合物联网设备的独特特性,导致应用现有的异常检测方法时准确率较低。在本文中,我们引入了一个两步认证过程,首先使用带有椭圆曲线密码学(ECC)的秘密ID进行匿名认证,然后对被标记为可疑活动的用户使用入侵检测算法。该方案允许用户使用加密凭证向云服务提供商(CSP)注册。CSP会回复为物联网用户在雾节点中预留的一个秘密数字。为了访问雾服务提供商(FSP)提供的服务,物联网用户必须提交一个秘密ID。此外,我们引入了一种用于入侵检测的堆叠集成学习方法,在检测异常实例时,该方法的准确率达到99.86%,精确率达到99.89%,召回率达到99.96%,F1分数达到99.91%,支持计数为50376。当用户未能提供正确的秘密ID时应用此方法。我们提出的方案通过对称加密和解密技术利用多个哈希函数来确保端到端的安全通信。