Suppr超能文献

使用集成学习和先进特征选择技术实现物联网和雾计算中的优化入侵检测。

Optimized intrusion detection in IoT and fog computing using ensemble learning and advanced feature selection.

作者信息

Tawfik Mohammed

机构信息

Faculty of Computer and Information Technology, Sana'a University, Sana'a, Yemen.

出版信息

PLoS One. 2024 Aug 1;19(8):e0304082. doi: 10.1371/journal.pone.0304082. eCollection 2024.

Abstract

The proliferation of Internet of Things (IoT) devices and fog computing architectures has introduced major security and cyber threats. Intrusion detection systems have become effective in monitoring network traffic and activities to identify anomalies that are indicative of attacks. However, constraints such as limited computing resources at fog nodes render conventional intrusion detection techniques impractical. This paper proposes a novel framework that integrates stacked autoencoders, CatBoost, and an optimised transformer-CNN-LSTM ensemble tailored for intrusion detection in fog and IoT networks. Autoencoders extract robust features from high-dimensional traffic data while reducing the dimensionality of the efficiency at fog nodes. CatBoost refines features through predictive selection. The ensemble model combines self-attention, convolutions, and recurrence for comprehensive traffic analysis in the cloud. Evaluations of the NSL-KDD, UNSW-NB15, and AWID benchmarks demonstrate an accuracy of over 99% in detecting threats across traditional, hybrid enterprises and wireless environments. Integrated edge preprocessing and cloud-based ensemble learning pipelines enable efficient and accurate anomaly detection. The results highlight the viability of securing real-world fog and the IoT infrastructure against continuously evolving cyber-attacks.

摘要

物联网(IoT)设备和雾计算架构的激增带来了重大的安全和网络威胁。入侵检测系统在监控网络流量和活动以识别表明攻击的异常情况方面已变得有效。然而,雾节点处有限的计算资源等限制使得传统的入侵检测技术不切实际。本文提出了一种新颖的框架,该框架集成了堆叠自动编码器、CatBoost以及专为雾和物联网网络中的入侵检测量身定制的优化变压器 - 卷积神经网络 - 长短期记忆网络(Transformer-CNN-LSTM)集成模型。自动编码器从高维流量数据中提取强大的特征,同时降低雾节点处的效率维度。CatBoost通过预测选择来优化特征。该集成模型结合了自注意力、卷积和循环,以便在云端进行全面的流量分析。对NSL-KDD、UNSW-NB15和AWID基准测试的评估表明,在检测传统、混合企业和无线环境中的威胁方面,准确率超过99%。集成的边缘预处理和基于云的集成学习管道实现了高效且准确的异常检测。结果突出了保护现实世界中的雾和物联网基础设施免受不断演变的网络攻击的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eae/11293719/705ffa59bd24/pone.0304082.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验