Suppr超能文献

通过机器学习实现的多材料超材料逆设计,用于可定制和可重复使用的能量吸收。

Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption.

作者信息

Li Xuyang, Qin Yong, Sun Lianfa, Guo Xiaogang

机构信息

Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38203-38214. doi: 10.1021/acsami.5c05307. Epub 2025 Jun 16.

Abstract

The demand for precisely tailorable mechanical parameters of energy-absorbing structures is emerging. This paper proposes a machine learning-driven inverse design framework that resolves this multiobjective challenge through 181-dimensional parameter optimization. Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. Subsequently, the metamaterials with the specific platform stress values (from 0.015 to 4.05 MPa) and specific energy absorptions (from 0.049 to 23.377 J/g) can be inversely designed with the aid of the artificial neural networks and genetic algorithms to pinpoint optimized parameters from a 181-dimensional space. Noteworthily, the metamaterials in NiTi alloy presented a high-level reusability even after five compression cycles (over 50% recovery), demonstrating its advantage in realizing the reusable and desired energy-absorbing performances. This method has been rigorously validated through additive manufacturing and experimental characterization. This work bridges the critical gap between customizable energy absorption and structural reusability.

摘要

对能量吸收结构精确可定制机械参数的需求正在出现。本文提出了一种机器学习驱动的逆向设计框架,通过181维参数优化解决这一多目标挑战。我们的方法将多材料兼容性(热塑性聚氨酯/树脂/镍钛合金/铝合金)与拓扑变形的体心立方(BCC)晶格相结合,其中节点坐标、梁直径和材料参数共同优化。我们通过使用有限元分析对随机生成的BCC晶格结构进行20000多次模拟实验,深入研究材料参数、节点坐标和梁直径变化对结构压缩性能的影响。随后,借助人工神经网络和遗传算法,可以逆向设计出具有特定平台应力值(0.015至4.05兆帕)和特定能量吸收值(0.049至23.377焦/克)的超材料,以便从181维空间中找出优化参数。值得注意的是,镍钛合金超材料即使在五个压缩循环后仍具有高水平的可重复使用性(恢复率超过50%),证明了其在实现可重复使用和理想能量吸收性能方面的优势。该方法已通过增材制造和实验表征得到严格验证。这项工作弥合了可定制能量吸收与结构可重复使用性之间的关键差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验