Zhang Qingling, Wang Peng, Ni Cui, Liu Xianchang
School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan, China.
PLoS One. 2025 Jun 16;20(6):e0318981. doi: 10.1371/journal.pone.0318981. eCollection 2025.
An effective Multi-Agent Path Finding (MAPF) algorithm must efficiently plan paths for multiple agents while adhering to constraints, ensuring safe navigation from start to goal. However, due to partial observability, agents often struggle to determine optimal strategies. Thus, developing a robust information fusion method is crucial for addressing these challenges. Information fusion expands the observation range of each agent, thereby enhancing the overall performance of the MAPF system. This paper explores a fusion approach in both temporal and spatial dimensions based on Graph Attention Networks (GAT). Since MAPF is a long-horizon, continuous task, leveraging historical observation dependencies is key for predicting future actions. Initially, historical observations are fused by incorporating a Gated Recurrent Unit (GRU) with a Convolutional Neural Network (CNN), extracting local observations to form an encoder. Next, GAT is used to enable inter-agent communication, utilizing the stability of the scaled dot-product aggregation to merge agents' information. Finally, the aggregated data is decoded into the agent's final action strategy, effectively solving the partial observability problem. Experimental results show that the proposed method improves accuracy and time efficiency by 24.5%, 47%, and 37.5%, 73% over GNN and GAT, respectively, under varying map sizes and agent densities. Notably, the performance enhancement is more pronounced in larger maps, highlighting the algorithm's scalability.
一种有效的多智能体路径寻找(MAPF)算法必须在遵守约束条件的同时,为多个智能体高效地规划路径,确保从起点到目标的安全导航。然而,由于部分可观测性,智能体往往难以确定最优策略。因此,开发一种强大的信息融合方法对于应对这些挑战至关重要。信息融合扩展了每个智能体的观测范围,从而提高了MAPF系统的整体性能。本文基于图注意力网络(GAT)探索了一种在时间和空间维度上的融合方法。由于MAPF是一个长期的、连续的任务,利用历史观测依赖关系是预测未来行动的关键。首先,通过将门控循环单元(GRU)与卷积神经网络(CNN)相结合来融合历史观测,提取局部观测以形成一个编码器。接下来,使用GAT实现智能体间的通信,利用缩放点积聚合的稳定性来合并智能体的信息。最后,将聚合后的数据解码为智能体的最终行动策略,有效地解决了部分可观测性问题。实验结果表明,在不同的地图大小和智能体密度下,所提出的方法分别比GNN和GAT在准确率和时间效率上提高了24.5%、47%以及37.5%、73%。值得注意的是,在更大的地图中性能提升更为显著,突出了该算法的可扩展性。