Wang Zhuozheng, Wang Yunlong
Faculty of Information Technology, Beijing University of Technology, Beijing, China.
Front Hum Neurosci. 2025 May 21;19:1599960. doi: 10.3389/fnhum.2025.1599960. eCollection 2025.
Electroencephalography (EEG) provides a non-invasive and real-time approach to decoding motor imagery (MI) tasks, such as finger movements, offering significant potential for brain-computer interface (BCI) applications. However, due to the complex, noisy, and non-stationary nature of EEG signals, traditional classification methods-such as Common Spatial Pattern (CSP) and Power Spectral Density (PSD)-struggle to extract meaningful, multidimensional features. While deep learning models like CNNs and RNNs have shown promise, they often focus on single-dimensional aspects and lack interpretability, limiting their neuroscientific relevance. This study proposes a novel multi-branch deep learning framework, termed Multi-Branch GAT-GRU-Transformer, to enhance EEG-based MI classification. The model consists of parallel branches to extract spatial, temporal, and frequency features: a Graph Attention Network (GAT) models spatial relationships among EEG channels, a hybrid Gated Recurrent Unit (GRU) and Transformer module captures temporal dependencies, and one-dimensional CNNs extract frequency-specific information. Feature fusion is employed to integrate these heterogeneous representations. To improve interpretability, the model incorporates SHAP (SHapley Additive exPlanations) and Phase Locking Value (PLV) analyses. Notably, PLV is also used to construct the GAT adjacency matrix, embedding biologically-informed spatial priors into the learning process. The proposed model was evaluated on the Kaya dataset, achieving a five-class MI classification accuracy of 55.76%. Ablation studies confirmed the effectiveness of each architectural component. Furthermore, SHAP and PLV analyses identified C3 and C4 as critical EEG channels and highlighted the Beta frequency band as highly relevant, aligning with known motor-related neural activity. The Multi-Branch GAT-GRU-Transformer effectively addresses key challenges in EEG-based MI classification by integrating domain-relevant spatial, temporal, and frequency features, while enhancing model interpretability through biologically grounded mechanisms. This work not only improves classification performance but also provides a transparent framework for neuroscientific investigation, with broad implications for BCI development and cognitive neuroscience research.
脑电图(EEG)提供了一种非侵入性的实时方法来解码运动想象(MI)任务,例如手指运动,这为脑机接口(BCI)应用提供了巨大潜力。然而,由于EEG信号具有复杂、嘈杂和非平稳的特性,传统的分类方法,如共同空间模式(CSP)和功率谱密度(PSD),难以提取有意义的多维特征。虽然像卷积神经网络(CNNs)和循环神经网络(RNNs)这样的深度学习模型已显示出前景,但它们通常专注于单维方面且缺乏可解释性,限制了它们在神经科学方面的相关性。本研究提出了一种新颖的多分支深度学习框架,称为多分支图注意力网络-门控循环单元-Transformer(Multi-Branch GAT-GRU-Transformer),以增强基于EEG的MI分类。该模型由并行分支组成,用于提取空间、时间和频率特征:图注意力网络(GAT)对EEG通道之间的空间关系进行建模,混合门控循环单元(GRU)和Transformer模块捕获时间依赖性,一维卷积神经网络提取特定频率信息。采用特征融合来整合这些异构表示。为了提高可解释性,该模型纳入了SHAP(SHapley加性解释)和锁相值(PLV)分析。值得注意的是,PLV还用于构建GAT邻接矩阵,将基于生物学的空间先验嵌入到学习过程中。所提出的模型在Kaya数据集上进行了评估,实现了五类MI分类准确率为55.76%。消融研究证实了每个架构组件的有效性。此外,SHAP和PLV分析确定C3和C4为关键的EEG通道,并突出了β频段高度相关,这与已知的与运动相关的神经活动一致。多分支GAT-GRU-Transformer通过整合与领域相关的空间、时间和频率特征,有效地解决了基于EEG的MI分类中的关键挑战,同时通过基于生物学的机制增强了模型的可解释性。这项工作不仅提高了分类性能,还为神经科学研究提供了一个透明的框架,对BCI发展和认知神经科学研究具有广泛的意义。