Suppr超能文献

使用深度势的EMIM-TFSI离子对的红外光谱。

IR Spectra for the EMIM-TFSI Ion Pair Using Deep Potentials.

作者信息

Oliaei H, Aluru N R

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

J Chem Theory Comput. 2025 Jul 8;21(13):6622-6632. doi: 10.1021/acs.jctc.5c00187. Epub 2025 Jun 16.

Abstract

Despite advances in the characterization of ionic liquids (ILs), elucidating their infrared (IR) spectra remains challenging due to the computational demands of methods. In this study, we employ a framework that integrates deep potential (DP) and deep Wannier (DW) models to investigate the configuration, dipole moment, and IR spectra of a 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM]-[TFSI]) pair. The accuracy and reliability of these models are evaluated by benchmarking against molecular dynamics (AIMD) across structural, dipolar, and spectral features. Our results demonstrate overall agreement while emphasizing the importance of achieving well-converged dipole distributions─typically requiring tens to hundreds of picoseconds of simulation─to enhance spectral resolution. Such convergence is essential for minimizing noise or bias arising from specific ionic configurations (referred to as "on-top" or "in-front" in the current study) and is enabled by the computational efficiency of DW- and DP-based molecular dynamics (DW/DPMD), which supports long simulation time scales. The DW/DPMD approach reproduces both the dipole moment range (7-16 D) and the average (∼10 D) observed in AIMD while yielding smoother and better-converged distributions. Furthermore, the IR spectrum obtained from DW/DPMD closely aligns with that of AIMD, faithfully capturing key vibrational features such as < < , consistent with experimental observations. In contrast, classical IR spectra tend to underestimate or overestimate the intensities of specific bands and fail to reproduce the correct relative wavenumbers compared to AIMD and experimental data. This study highlights the capability of deep learning potentials and dipole models─particularly DP and DW─to address systems involving charged species and complex ionic interactions while illustrating the limitations of classical approaches. Our findings pave the way for the development of more advanced surrogate models and their application to increasingly complex systems, including bulk materials and interfaces.

摘要

尽管离子液体(ILs)的表征取得了进展,但由于方法的计算需求,阐明其红外(IR)光谱仍然具有挑战性。在本研究中,我们采用了一个整合深度势(DP)和深度万尼尔(DW)模型的框架,来研究1-乙基-3-甲基咪唑双(三氟甲基磺酰)亚胺([EMIM]-[TFSI])对的构型、偶极矩和红外光谱。通过针对结构、偶极和光谱特征与第一性原理分子动力学(AIMD)进行基准测试,评估了这些模型的准确性和可靠性。我们的结果表明总体上是一致的,同时强调了实现良好收敛的偶极分布的重要性——通常需要数十到数百皮秒的模拟——以提高光谱分辨率。这种收敛对于最小化由特定离子构型(在本研究中称为“顶部”或“前部”)产生的噪声或偏差至关重要,并且基于DW和DP的分子动力学(DW/DPMD)的计算效率能够实现这种收敛,它支持长时间的模拟时间尺度。DW/DPMD方法再现了AIMD中观察到的偶极矩范围(7 - 16 D)和平均值(约10 D),同时产生更平滑和收敛更好的分布。此外,从DW/DPMD获得的红外光谱与AIMD的光谱紧密对齐,忠实地捕捉了诸如< < 等关键振动特征,与实验观察结果一致。相比之下,经典红外光谱往往低估或高估特定谱带的强度,并且与AIMD和实验数据相比,无法再现正确的相对波数。本研究突出了深度学习势和偶极模型——特别是DP和DW——处理涉及带电物种和复杂离子相互作用的系统的能力,同时说明了经典方法的局限性。我们的发现为开发更先进的替代模型及其在包括块状材料和界面在内的日益复杂系统中的应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验