Suppr超能文献

深度机制设计:学习造福人类的社会和经济政策。

Deep mechanism design: Learning social and economic policies for human benefit.

作者信息

Tacchetti Andrea, Koster Raphael, Balaguer Jan, Leqi Liu, Pislar Mîruna, Botvinick Matthew M, Tuyls Karl, Parkes David C, Summerfield Christopher

机构信息

Google DeepMind, London EC4A 3TW.

Princeton Language and Intelligence, Princeton University, Princeton, NJ 08544.

出版信息

Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2319949121. doi: 10.1073/pnas.2319949121. Epub 2025 Jun 16.

Abstract

Human society is coordinated by mechanisms that control how prices are agreed, taxes are set, and electoral votes are tallied. The design of robust and effective mechanisms for human benefit is a core problem in the social, economic, and political sciences. Here, we discuss the recent application of modern tools from AI research, including deep neural networks trained with reinforcement learning (RL), to create more desirable mechanisms for people. We review the application of machine learning to design effective auctions, learn optimal tax policies, and discover redistribution policies that win the popular vote among human users. We discuss the challenge of accurately modeling human preferences and the problem of aligning a mechanism to the wishes of a potentially diverse group. We highlight the importance of ensuring that research into "deep mechanism design" is conducted safely and ethically.

摘要

人类社会是由控制价格商定方式、税收设定方式以及选举票数计算方式的机制来协调的。设计造福人类的稳健且有效的机制是社会科学、经济学和政治学中的一个核心问题。在此,我们讨论人工智能研究中现代工具的近期应用,包括通过强化学习(RL)训练的深度神经网络,以创建对人们更有利的机制。我们回顾机器学习在设计有效拍卖、学习最优税收政策以及发现能在人类用户中赢得普选的再分配政策方面的应用。我们讨论准确建模人类偏好的挑战以及使机制与潜在多样化群体的意愿保持一致的问题。我们强调确保安全且合乎道德地开展“深度机制设计”研究的重要性。

相似文献

1
Deep mechanism design: Learning social and economic policies for human benefit.深度机制设计:学习造福人类的社会和经济政策。
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2319949121. doi: 10.1073/pnas.2319949121. Epub 2025 Jun 16.
4
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.

引用本文的文献

1
Collective artificial intelligence and evolutionary dynamics.集体人工智能与进化动力学
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2505860122. doi: 10.1073/pnas.2505860122. Epub 2025 Jun 16.

本文引用的文献

1
Human-centred mechanism design with Democratic AI.以人为本的机制设计与民主 AI。
Nat Hum Behav. 2022 Oct;6(10):1398-1407. doi: 10.1038/s41562-022-01383-x. Epub 2022 Jul 4.
4
Fair algorithms for selecting citizens' assemblies.公平的公民大会选择算法。
Nature. 2021 Aug;596(7873):548-552. doi: 10.1038/s41586-021-03788-6. Epub 2021 Aug 4.
6
Adversarial vulnerabilities of human decision-making.人类决策的对抗性漏洞。
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29221-29228. doi: 10.1073/pnas.2016921117. Epub 2020 Nov 4.
10
Normative foundations of human cooperation.人类合作的规范基础。
Nat Hum Behav. 2018 Jul;2(7):458-468. doi: 10.1038/s41562-018-0385-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验