Tacchetti Andrea, Koster Raphael, Balaguer Jan, Leqi Liu, Pislar Mîruna, Botvinick Matthew M, Tuyls Karl, Parkes David C, Summerfield Christopher
Google DeepMind, London EC4A 3TW.
Princeton Language and Intelligence, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2319949121. doi: 10.1073/pnas.2319949121. Epub 2025 Jun 16.
Human society is coordinated by mechanisms that control how prices are agreed, taxes are set, and electoral votes are tallied. The design of robust and effective mechanisms for human benefit is a core problem in the social, economic, and political sciences. Here, we discuss the recent application of modern tools from AI research, including deep neural networks trained with reinforcement learning (RL), to create more desirable mechanisms for people. We review the application of machine learning to design effective auctions, learn optimal tax policies, and discover redistribution policies that win the popular vote among human users. We discuss the challenge of accurately modeling human preferences and the problem of aligning a mechanism to the wishes of a potentially diverse group. We highlight the importance of ensuring that research into "deep mechanism design" is conducted safely and ethically.
人类社会是由控制价格商定方式、税收设定方式以及选举票数计算方式的机制来协调的。设计造福人类的稳健且有效的机制是社会科学、经济学和政治学中的一个核心问题。在此,我们讨论人工智能研究中现代工具的近期应用,包括通过强化学习(RL)训练的深度神经网络,以创建对人们更有利的机制。我们回顾机器学习在设计有效拍卖、学习最优税收政策以及发现能在人类用户中赢得普选的再分配政策方面的应用。我们讨论准确建模人类偏好的挑战以及使机制与潜在多样化群体的意愿保持一致的问题。我们强调确保安全且合乎道德地开展“深度机制设计”研究的重要性。