Suppr超能文献

基于群体强化学习的 3D 多人游戏中的人类水平表现。

Human-level performance in 3D multiplayer games with population-based reinforcement learning.

机构信息

DeepMind, London, UK.

出版信息

Science. 2019 May 31;364(6443):859-865. doi: 10.1126/science.aau6249.

Abstract

Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, in Capture the Flag mode, using only pixels and game points scored as input. We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.

摘要

强化学习(RL)在日益复杂的单智能体环境和两人回合制游戏中取得了巨大成功。然而,现实世界中包含多个智能体,每个智能体都在独立学习和行动,以与其他智能体合作和竞争。我们使用锦标赛式的评估方法证明,智能体仅使用像素和游戏得分作为输入,在三维多人第一人称视频游戏的夺旗模式下,可以达到人类水平的表现。我们使用了两级优化过程,其中,一组独立的 RL 智能体从数千个随机生成的环境中的并行比赛中同时进行训练。每个智能体都学习自己的内部奖励信号和对世界的丰富表示。这些结果表明,多智能体强化学习在人工智能研究中有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验