Suppr超能文献

倡导以社区为中心的模式来应对潜在的信息危害。

Advocating for a community-centred model for responding to potential information harms.

作者信息

Wardle Claire, Scales David

机构信息

Department of Communication, Cornell University, Ithaca, NY, USA.

Department of General Internal Medicine, Cornell Weill Medical College, Cornell University, New York, NY, USA.

出版信息

Nat Hum Behav. 2025 Jun 16. doi: 10.1038/s41562-025-02233-2.

Abstract

Various characteristics of contemporary information ecosystems, including types of dangerous speech (hate speech and misinformation), affordances such as algorithmic targeting and structural barriers such as paywalls, are potentially causing harms to different communities. The current focus by practitioners on 'social listening' as the primary mechanism for detecting these harms is flawed, and we argue that mechanisms that effectively integrate and contextualize both offline and online data streams are required. We therefore outline a blueprint for a new model, the Community-Centered Exploration, Engagement, and Evaluation system. It draws on lessons learned from integrated epidemiological surveillance systems that merge multiple data streams. Such an approach can help detect and mitigate potential information harms, integrating community participation and response at its core. This community-driven model is designed to counteract the growing public distrust across a range of issues including public health, election integrity and climate.

摘要

当代信息生态系统的各种特征,包括危险言论的类型(仇恨言论和错误信息)、算法定位等特性以及付费墙等结构性障碍,都有可能对不同社区造成伤害。目前从业者将“社会倾听”作为检测这些伤害的主要机制的做法存在缺陷,我们认为需要能有效整合线下和线上数据流并将其置于具体情境中的机制。因此,我们概述了一个新模型的蓝图,即社区中心探索、参与和评估系统。它借鉴了从整合多个数据流的综合流行病学监测系统中学到的经验教训。这种方法有助于检测和减轻潜在的信息伤害,将社区参与和应对作为其核心。这种社区驱动的模型旨在消除公众在包括公共卫生、选举诚信和气候等一系列问题上日益增长的不信任。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验