Suppr超能文献

探索结核病中的T细胞代谢:利用代谢基因开发诊断模型

Exploring T-cell metabolism in tuberculosis: development of a diagnostic model using metabolic genes.

作者信息

Ding Shoupeng, Huang Chunxiao, Gao Jinghua, Bi Chun, Zhou Yuyang, Cai Zihan

机构信息

Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China.

Center for Precision Medicine, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, 675000, China.

出版信息

Eur J Med Res. 2025 Jun 16;30(1):483. doi: 10.1186/s40001-025-02768-0.

Abstract

OBJECTIVES

The early diagnosis and immunoregulatory mechanisms of active tuberculosis (ATB) and latent tuberculosis infection (LTBI) remain unclear, and the role of metabolic genes in host-pathogen interactions requires further investigation.

METHODS

Single-cell RNA sequencing (scRNA-seq) was applied to analyze peripheral blood mononuclear cells (PBMCs) from 7 individuals, including 2 healthy controls (HC), 2 LTBI patients, and 3 ATB patients. We identified T-cell-associated metabolic differentially expressed genes (TCM-DEGs) through integrated differential expression analysis and machine learning algorithms (XGBoost, SVM-RFE, and Boruta). These TCM-DEGs were then used to construct a diagnostic model and evaluate its clinical applicability.

RESULTS

The analysis revealed significant immunological alterations in TB patients, characterized by markedly elevated monocyte/macrophage populations (p < 0.001) accompanied by reduced T and NK cell counts. Notably, LTBI cases demonstrated an intermediate CD4+/CD8+ T-cell ratio, indicative of dynamic immune homeostasis. The TB cohort exhibited increased inflammatory T-cell populations, while CD8+ T-cell-mediated MHC-I and BTLA signaling pathways were identified as key regulators of immune clearance and modulation. Transcriptomic profiling identified five metabolically significant differentially expressed genes (FHIT, MAN1C1, SLC4C7, NT5E, AKR1C3; p < 0.05) that effectively distinguish between latent tuberculosis infection (LTBI) and active tuberculosis (TB). The machine learning-driven diagnostic framework demonstrated remarkable consistency across independent validation cohorts (GSE39940, GSE39939), exhibiting AUC values spanning 0.867-0.873. Molecular subtyping analysis delineated two distinct TB phenotypes: an immune-activated M1 macrophage-dominant subtype and a CD8 + T-cell infiltrated immunophenotype. Clinical validation substantiated the differential expression patterns of T-cell-related metabolic differentially expressed genes (TCM-DEGs; p < 0.05), while the nomogram predictive model achieved exceptional discriminative capacity (C-index = 0.944), demonstrating superior clinical applicability through decision curve analysis.

CONCLUSIONS

Our findings reveal that TCM-DEGs critically regulate TB progression through immune-metabolic reprogramming and cell-cell communication networks. The developed diagnostic model and molecular subtyping strategy enable precise TB-LTBI differentiation and inform immunotherapy optimization.

摘要

目的

活动性肺结核(ATB)和潜伏性结核感染(LTBI)的早期诊断及免疫调节机制仍不明确,代谢基因在宿主-病原体相互作用中的作用有待进一步研究。

方法

应用单细胞RNA测序(scRNA-seq)分析7名个体的外周血单个核细胞(PBMC),包括2名健康对照(HC)、2名LTBI患者和3名ATB患者。我们通过综合差异表达分析和机器学习算法(XGBoost、SVM-RFE和Boruta)鉴定出与T细胞相关的代谢差异表达基因(TCM-DEGs)。然后利用这些TCM-DEGs构建诊断模型并评估其临床适用性。

结果

分析显示肺结核患者存在显著的免疫改变,其特征为单核细胞/巨噬细胞群体明显增加(p<0.001),同时T细胞和NK细胞计数减少。值得注意的是,LTBI病例表现出中间的CD4+/CD8+T细胞比值,表明免疫动态平衡。肺结核队列中炎症性T细胞群体增加,而CD8+T细胞介导的MHC-I和BTLA信号通路被确定为免疫清除和调节的关键调节因子。转录组分析确定了五个具有代谢意义的差异表达基因(FHIT、MAN1C1、SLC4C7、NT5E、AKR1C3;p<0.05),它们能有效区分潜伏性结核感染(LTBI)和活动性肺结核(TB)。机器学习驱动的诊断框架在独立验证队列(GSE39940、GSE39939)中表现出显著的一致性,AUC值在0.867-0.873之间。分子亚型分析确定了两种不同的肺结核表型:免疫激活的以M1巨噬细胞为主的亚型和CD8+T细胞浸润的免疫表型。临床验证证实了T细胞相关代谢差异表达基因(TCM-DEGs;p<0.05)的差异表达模式,而列线图预测模型具有出色的鉴别能力(C指数=0.944),通过决策曲线分析显示出卓越的临床适用性。

结论

我们的研究结果表明,TCM-DEGs通过免疫代谢重编程和细胞间通讯网络关键地调节肺结核的进展。所开发的诊断模型和分子亚型分析策略能够实现肺结核与LTBI的精确区分,并为免疫治疗优化提供依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验