Li Siyang, Sun Chenxi, Zhang Minghao, Tang Rong, Chen Minghui, Meng Weiwei, Yang Jin, Kang Yuanhong, Lv Zeheng, Zhao Jinbao, Yang Yang
State Key Laboratory of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China.
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202506849. doi: 10.1002/anie.202506849. Epub 2025 Jun 25.
Aqueous zinc-iodine batteries (AZIBs) hold great promise for next-generation energy storage technologies due to their inherent safety, cost-effectiveness, and environmental friendliness. However, unstable interfacial chemistry manifested as polyiodide formation and accumulation at the cathode, alongside dendrite growth and hydrogen evolution reaction (HER) at the anode results in capacity loss. Moreover, polyiodide migration toward the anode further triggers severe Zn corrosion, exacerbating interfacial instability. Herein, we design an integrated tandem-structured separator comprising an InO-SiO (ISO) layer with a buffer-release-repair mechanism and a polyiodide adsorption-catalysis layer featuring Co nanoparticles-encapsulated carbon nanofiber (Co@CNF) to achieve dual-enhanced stable interfaces. Specifically, amphoteric InO within the ISO layer effectively neutralizes OH⁻ generated by localized HER, concurrently releasing soluble indium species. These indium species subsequently electrodeposit to form zincophilic and HER-inhibiting sites on the affected regions, restoring interfacial environment and mitigating Zn anode degradation. Meanwhile, the Co@CNF layer anchors polyiodides and significantly catalyzes conversion kinetics, suppressing the shuttle effect and preventing polyiodide-induced anode corrosion. Benefiting from the synergistic stabilization of both electrode interfaces, the as-fabricated Zn||ISO + Co@CNF||I full cells achieve a high areal capacity of 2.97 mAh cm and remarkable cycling stability over 20 000 cycles. This work provides valuable insights into designing functional separators for practical AZIBs.
水系锌碘电池(AZIBs)因其固有的安全性、成本效益和环境友好性,在下一代储能技术方面具有巨大潜力。然而,不稳定的界面化学表现为阴极处多碘化物的形成和积累,同时阳极处枝晶生长和析氢反应(HER)导致容量损失。此外,多碘化物向阳极迁移进一步引发严重的锌腐蚀,加剧界面不稳定性。在此,我们设计了一种集成串联结构的隔膜,它包括具有缓冲释放修复机制的InO-SiO(ISO)层和以钴纳米颗粒包裹的碳纳米纤维(Co@CNF)为特征的多碘化物吸附催化层,以实现双增强稳定界面。具体而言,ISO层中的两性InO有效中和局部HER产生的OH⁻,同时释放可溶性铟物种。这些铟物种随后电沉积,在受影响区域形成亲锌且抑制HER的位点,恢复界面环境并减轻锌阳极降解。同时,Co@CNF层锚定多碘化物并显著催化转化动力学,抑制穿梭效应并防止多碘化物诱导的阳极腐蚀。受益于两个电极界面的协同稳定作用,所制备的Zn||ISO + Co@CNF||I全电池实现了2.97 mAh cm的高面积容量以及超过20000次循环的卓越循环稳定性。这项工作为设计实用的AZIBs功能隔膜提供了有价值的见解。