Li Jiayi, Zhang Xiao, Xu Xinming, Xie Bingqing, Wang Yuchun, Su Long, Wang Hansen, Ouyang Chuying, Gao Xinpei
School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, P. R. China.
Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
Adv Sci (Weinh). 2025 Jul 28:e09239. doi: 10.1002/advs.202509239.
Uncontrolled dendrite growth, water-induced side reactions, and polyiodide shuttling remain critical in aqueous Zn-iodine batteries (AZIBs). Herein, an "electric double layer (EDL)-directed regulator" strategy utilizing amphiphilic acetylcholine cation (ACh) as interfacial modifiers is proposed. The directed adsorption of ACh on the Zn anode surface assembles a hydrophobic-hydrophilic gradient interfacial structure. The hydrophobic inner layer establishes a water-poor EDL structure, reducing direct Zn-electrolyte contact and suppressing side reactions. Meanwhile, the hydrophilic outer layer disrupts the original HO-HO within EDL structure, lowering water activity and reducing the Zn desolvation energy barrier. When coupled with an I cathode, dissolvable polyiodide anions are captured by ACh via electrostatic interactions, effectively inhibiting the polyiodide shuttles. Consequently, the Zn anode with optimized EDL delivers a high Coulombic efficiency (CE) of 99.82%, with remarkable stability over 3700 h at 1.0 mA cm/1.0 mAh cm and 1500 h at 10 mA cm/1.0 mAh cm. Moreover, the Zn-I full cell exhibits an ultralow capacity decay rate of merely 0.000512% per cycle over 25000 cycles at 2.0 A g. This work provides an effective EDL regulation strategy for optimizing the Zn anode interfacial chemistry toward the advanced AZIBs.
在水系锌碘电池(AZIBs)中,不受控制的枝晶生长、水诱导的副反应和多碘化物穿梭现象仍然是关键问题。在此,提出了一种利用两亲性乙酰胆碱阳离子(ACh)作为界面改性剂的“双电层(EDL)导向调节剂”策略。ACh在锌阳极表面的定向吸附组装成一种疏水-亲水梯度界面结构。疏水内层建立了贫水的双电层结构,减少了锌与电解质的直接接触并抑制了副反应。同时,亲水外层破坏了双电层结构内原有的HO-HO,降低了水活性并降低了锌去溶剂化能垒。当与碘阴极耦合时,可溶解的多碘化物阴离子通过静电相互作用被ACh捕获,有效抑制了多碘化物穿梭。因此,具有优化双电层的锌阳极具有99.82%的高库仑效率(CE),在1.0 mA cm/1.0 mAh cm下超过3700小时以及在10 mA cm/1.0 mAh cm下超过1500小时都具有显著的稳定性。此外,锌碘全电池在2.0 A g下25000次循环中表现出极低的容量衰减率,仅为每循环0.000512%。这项工作为优化锌阳极界面化学以实现先进的水系锌碘电池提供了一种有效的双电层调节策略。