Wu Qilong, Tang Rong, Wang Peiyao, Meng Fanxiang, Zhang Minghao, Lin Sirui, Lv Zeheng, Zhao Jinbao, Yang Yang
State Key Laboratory of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China.
Angew Chem Int Ed Engl. 2025 Sep 26;64(40):e202513224. doi: 10.1002/anie.202513224. Epub 2025 Aug 11.
Aqueous zinc-bromine (Zn-Br) batteries have emerged as promising candidates for grid-scale energy storage due to their intrinsic safety and low cost. However, their practical deployment is hindered by the dissolution of polybromide species at the cathode and their subsequent shuttling and corrosive reactions at the zinc anode, which severely limit areal capacity and cycling stability. Herein, a Taiji-inspired dual-electrode stabilization strategy is developed to synergistically regulate interfacial chemistry at both electrodes, enabling durable high-areal-capacity Zn-Br batteries. This design leverages the dynamic balance of opposing yet complementary electrostatic interactions, facilitating targeted attraction (Yin) and repulsion (Yang) of polybromides at cathode/anode interfaces, respectively. At the cathode, positively charged quaternary ammonium groups in poly(diallyldimethylammonium chloride) (PDDA) enable strong electrostatic binding to polybromides, effectively confining them within the cathode and preventing diffusion into the electrolyte. Simultaneously, a lotus-leaf-biomimetic interphase with high electronegativity and hydrophobicity is constructed on Zn anode to repel polybromides and suppress parasitic reactions. Theoretical calculations and in situ spectroscopic analyses confirm the effective suppression of polybromide shuttling and Zn corrosion. Consequently, the optimized KB-PDDA//Zn@ZnO-PFNA cell achieves a high areal capacity of 5.5 mAh cm and exceptional cycling stability exceeding 20000 cycles, highlighting the critical importance of dual-interface engineering for advancing practical Zn-Br battery technologies.
水系锌溴(Zn-Br)电池因其本质安全性和低成本,已成为电网规模储能的有前景候选者。然而,其实际应用受到阴极多溴化物物种的溶解以及随后在锌阳极的穿梭和腐蚀反应的阻碍,这严重限制了面积容量和循环稳定性。在此,开发了一种受太极启发的双电极稳定策略,以协同调节两个电极的界面化学,从而实现耐用的高面积容量Zn-Br电池。这种设计利用了相反但互补的静电相互作用的动态平衡,分别促进了多溴化物在阴极/阳极界面的靶向吸引(阴)和排斥(阳)。在阴极,聚二烯丙基二甲基氯化铵(PDDA)中带正电的季铵基团能够与多溴化物形成强静电结合,有效地将它们限制在阴极内并防止扩散到电解质中。同时,在锌阳极上构建具有高电负性和疏水性的荷叶仿生界面,以排斥多溴化物并抑制寄生反应。理论计算和原位光谱分析证实了对多溴化物穿梭和锌腐蚀的有效抑制。因此,优化后的KB-PDDA//Zn@ZnO-PFNA电池实现了5.5 mAh cm的高面积容量和超过20000次循环的出色循环稳定性,突出了双界面工程对推进实用Zn-Br电池技术的关键重要性。