Suppr超能文献

蛋白质构象决定自旋选择性电子传输。

Protein Conformation Governs Spin-Selective Electron Transmission.

作者信息

Preeyanka Naupada, Das Tapan Kumar, Naaman Ron

机构信息

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

出版信息

J Phys Chem Lett. 2025 Jun 26;16(25):6442-6446. doi: 10.1021/acs.jpclett.5c01495. Epub 2025 Jun 17.

Abstract

The chiral induced spin selectivity (CISS) effect results in spin-dependent electron transmission through chiral systems. In biological systems such as proteins, chirality appears in both primary and secondary structures, namely, in the existence of asymmetric carbon atoms and in the chiral configuration of oligopeptide subunits. An important question is what contribution each type of chirality makes to this effect. Here we present the impact of denaturation on spin polarization using d-glucose oxidase (GOx) as a model system. Employing Hall-effect and magnetoresistance (MR) measurements, we compared the spin selective behavior of GOx in its native and thermally denatured states. Our results show that the native protein, characterized by a well-defined helical structure and intact flavin adenine dinucleotide (FAD) cofactor, exhibits strong spin polarization. Upon denaturation at elevated temperatures (65 and 95 °C), a marked reduction in both Hall voltage slope and MR values indicates a significant loss in spin polarization capability. This behavior is attributed to the disruption of the protein's secondary structure, which is essential for maintaining chiral potential landscapes for spin selectivity. These findings highlight the importance of secondary structure in maintaining a high spin polarization in proteins. We also demonstrate that the spin-related structural properties of the protein are retained, even when the protein is imbedded in a solid-state device.

摘要

手性诱导自旋选择性(CISS)效应导致自旋相关电子通过手性体系的传输。在诸如蛋白质的生物体系中,手性同时出现在一级和二级结构中,即在不对称碳原子的存在以及寡肽亚基的手性构型中。一个重要的问题是每种手性对这种效应的贡献是什么。在这里,我们以d -葡萄糖氧化酶(GOx)作为模型体系,展示了变性对自旋极化的影响。通过霍尔效应和磁阻(MR)测量,我们比较了GOx在其天然状态和热变性状态下的自旋选择性行为。我们的结果表明,以明确的螺旋结构和完整的黄素腺嘌呤二核苷酸(FAD)辅因子为特征的天然蛋白质表现出强烈的自旋极化。在高温(65和95°C)下变性时,霍尔电压斜率和MR值均显著降低,表明自旋极化能力明显丧失。这种行为归因于蛋白质二级结构的破坏,而二级结构对于维持自旋选择性的手性势场至关重要。这些发现突出了二级结构在维持蛋白质高自旋极化方面的重要性。我们还证明,即使蛋白质嵌入固态器件中,其与自旋相关的结构特性仍能保留。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验