Suppr超能文献

研究CsAgBiI双钙钛矿中各种取代策略对增强其光电性能的作用。

Investigating the Role of Various Substitution Strategies in CsAgBiI Double Perovskite Toward the Enhancement of Its Optoelectronic Properties.

作者信息

Dey Binoy Chandra, Samanta Kousik

机构信息

Quantum Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India.

出版信息

Small. 2025 Aug;21(33):e2504210. doi: 10.1002/smll.202504210. Epub 2025 Jun 17.

Abstract

Halide double perovskites (HDPs) have emerged as promising non-toxic alternatives to lead-based perovskites for optoelectronic applications. Their electronic and optical properties, particularly the bandgap, can be tuned through elemental doping. In this study, first-principles calculations based on density functional theory (DFT) are employed using periodic boundary conditions to investigate the effects of Cu and Na doping on the structural, electronic, and optical properties of the CsAgBiI HDP. All calculations are performed using the PBE exchange-correlation functional. To improve the accuracy of the band structure evaluations, additional calculations are conducted using the HSE06 hybrid functional with spin-orbit coupling included (HSE06+SOC). It is found that a low level of doping typically decreases the structural stability, but the structures become more stable at higher doping levels. The pristine structure of CsAgBiI exhibits a band gap of 1.21 eV at the HSE06+SOC level. Cu doping introduces new states near the Fermi level and reduces the bandgap. The 50% Cu-doped structure has the smallest band gap of 0.49 eV (HSE06+SOC). Na doping does not introduce new states near the Fermi level, but it changes the valence band and affects band clustering. Due to a narrow bandgap, the 50% Cu doped structure is expected to have the highest electrical conductivity. The pristine CsAgBiI HDP absorbs strongly in the UV-visible region with absorption maxima near 91, 185, 412, 485, 526, and 654 nm. The corresponding absorption coefficients are of the order of 10 cm. Notably, its absorption coefficient in the near-infrared region (800 nm) is comparable to that of typical infrared absorbers (∼10 cm). Doping modifies the absorption profile significantly: for instance, Cu doping at 75% red-shifts the 505 nm peak by 93 nm and enhances the absorption coefficient by a factor of 1.5-2.0. Na doping enhances absorption only at intermediate concentrations (25-50%) and alters the position of the absorption maxima. The ability to tune the absorption peaks and improve light absorption by doping makes these materials attractive for optoelectronic applications.

摘要

卤化物双钙钛矿(HDPs)已成为用于光电子应用的有前景的无毒替代铅基钙钛矿的材料。它们的电子和光学性质,特别是带隙,可以通过元素掺杂来调节。在本研究中,基于密度泛函理论(DFT)的第一性原理计算采用周期性边界条件来研究Cu和Na掺杂对CsAgBiI HDP的结构、电子和光学性质的影响。所有计算均使用PBE交换关联泛函进行。为了提高能带结构评估的准确性,还使用包含自旋轨道耦合的HSE06杂化泛函(HSE06+SOC)进行了额外的计算。结果发现,低掺杂水平通常会降低结构稳定性,但在较高掺杂水平时结构会变得更稳定。CsAgBiI的原始结构在HSE06+SOC水平下的带隙为1.21 eV。Cu掺杂在费米能级附近引入新的态并减小带隙。50% Cu掺杂的结构具有最小的带隙0.49 eV(HSE06+SOC)。Na掺杂在费米能级附近不引入新的态,但它会改变价带并影响能带聚集。由于带隙较窄,50% Cu掺杂的结构预计具有最高的电导率。原始的CsAgBiI HDP在紫外-可见光区域有强烈吸收,吸收最大值分别在91、185、412、485、526和654 nm附近。相应的吸收系数约为10⁴ cm⁻¹。值得注意的是,其在近红外区域(800 nm)的吸收系数与典型的红外吸收剂相当(约10⁴ cm⁻¹)。掺杂显著改变了吸收谱:例如,75% 的Cu掺杂使505 nm峰红移93 nm,并使吸收系数提高1.5 - 2.0倍。Na掺杂仅在中等浓度(25 - 50%)时增强吸收,并改变吸收最大值的位置。通过掺杂调节吸收峰和改善光吸收的能力使这些材料对光电子应用具有吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验