Sabino Fernando P, Xiong Jia-Xin, Zhang Xiuwen, Dalpian Gustavo M, Zunger Alex
Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP 13563-120, Brazil.
Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA.
Mater Horiz. 2025 Jun 26. doi: 10.1039/d5mh00540j.
Single-component halide perovskites (HPs) rarely satisfy all the necessary criteria for optoelectronic applications, such as achieving an optimal band gap while maintaining high chemical and structural stability. Alloying halide perovskites has emerged as a promising strategy, not only to enhance stability but also to fine-tune their electronic and optical properties. In this work, we explore multiple degrees of freedom in alloy design, considering different substitution sublattices sites (A, B, or X in ABX perovskites), various chemical species (isovalent and hetero-valent elements), and multi-component compositions on a given sublattice. Using first-principles calculations based on density functional theory (DFT), we investigate how compositional variations influence the electronic (band gap) and structural properties (mixing enthalpy) of HP alloys. Our approach employs the polymorphous cell model, allowing full local relaxation which breaks local symmetry while preserving global cubic symmetry-an essential framework for accurately modeling HPs. Our results reveal that X-site mixing (halogen substitution) primarily affects the valence band maximum, allowing target band gap engineering. Additionally, variations in halogen radii introduce internal strain through octahedral distortions, influencing the mixing enthalpy. A-site substitution, while not directly contributing to the band edge states, modifies structural stability volume effects, indirectly impacting the band gap. B-site alloying plays a dominant role in band gap modulation, leading to either positive or negative band gap bowing. Specifically, isovalent B-site mixing (Sn-Pb) induces strong positive bowing, where the alloy band gap is smaller than the average gap of parent compounds, whereas hetero-valent mixing (Cd-Pb) results in pronounced negative bowing. As an aside, we investigate the competition between the excess energy of disordered alloys that of long-range ordered double perovskites of the same compositions, seeking examples of ordered phases emerging from disordered alloys. Our findings provide fundamental insights into the electronic and structural behavior of HP alloys, offering valuable design principles for the development of stable and efficient materials for next-generation photovoltaic and optoelectronic devices.
单组分卤化物钙钛矿(HPs)很少能满足光电应用的所有必要标准,比如在保持高化学稳定性和结构稳定性的同时实现最佳带隙。卤化物钙钛矿合金化已成为一种很有前景的策略,不仅可以提高稳定性,还能微调其电子和光学性质。在这项工作中,我们在合金设计中探索多个自由度,考虑不同的取代亚晶格位点(ABX钙钛矿中的A、B或X)、各种化学物种(等价和异价元素)以及给定亚晶格上的多组分组成。使用基于密度泛函理论(DFT)的第一性原理计算,我们研究成分变化如何影响HP合金的电子性质(带隙)和结构性质(混合焓)。我们的方法采用多晶胞模型,允许完全局部弛豫,这会打破局部对称性,同时保持全局立方对称性——这是精确模拟HPs的一个基本框架。我们的结果表明,X位点混合(卤素取代)主要影响价带最大值,从而实现目标带隙工程。此外,卤素半径的变化通过八面体畸变引入内部应变,影响混合焓。A位点取代虽然不直接影响带边态,但会改变结构稳定性——体积效应,间接影响带隙。B位点合金化在带隙调制中起主导作用,导致带隙弯曲为正或为负。具体来说,等价B位点混合(Sn-Pb)会引起强烈的正弯曲,合金带隙小于母体化合物的平均带隙,而异价混合(Cd-Pb)则导致明显的负弯曲。顺便说一下,我们研究了无序合金的过剩能量与相同组成的长程有序双钙钛矿的过剩能量之间的竞争,寻找从无序合金中出现的有序相的例子。我们的发现为HP合金的电子和结构行为提供了基本见解,为开发用于下一代光伏和光电器件的稳定高效材料提供了有价值的设计原则。