Ernst Lukas, Sayed Hesham M B, Hassanin Ahmed, Moegenburg Rebekka, Meents Tomke, Lyu Hui, Kaufholdt David, Davari Mehdi D, Beerhues Ludger, Liu Benye, El-Awaad Islam
Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany.
Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, 38106, Braunschweig, Germany.
Plant J. 2025 Jun;122(6):e70268. doi: 10.1111/tpj.70268.
Reverse-prenylated phenolic compounds are an abundant class of bioactive plant natural products. Hyperixanthone A, an inhibitor of multidrug-resistant Staphylococcus aureus, is a polyprenylated xanthone carrying two forward geminal and one reverse prenyl group. Although prenyltransferases responsible for the forward prenylations were identified, the final reverse prenylation reaction remained elusive. No plant enzyme catalyzing reverse prenylation of an aromatic carbon has been described so far. Here we use metabolic profiling and transcriptomic information from Hypericum perforatum and H. sampsonii to identify homologous enzymes involved in the formation of reverse-prenylated xanthones and characterize their functions using in vitro, in vivo, and in silico approaches. The identified enzymes are non-canonical UbiA-type prenyltransferases, which surprisingly catalyze both forward and reverse prenylations with different regioselectivities. Reconstruction of the enzyme cascade in Saccharomyces cerevisiae and Nicotiana benthamiana confirmed reverse-prenylated hyperixanthone A as the major product. Molecular modeling and docking simulations supported by site-directed mutagenesis suggest two distinct binding modes, which enable forward and reverse prenylations and provide a rationale for the preferred catalysis of the reverse prenyl transfer reaction. The identification of reverse prenylation augments the repertoire of reactions catalyzed by membrane-bound UbiA-type plant aromatic prenyltransferases. The insights also provide a new tool for the biotechnological modification of pharmaceutically valuable natural products.
反式异戊烯基化酚类化合物是一类丰富的具有生物活性的植物天然产物。金丝桃酮A是一种耐多药金黄色葡萄球菌的抑制剂,是一种带有两个顺式偕二异戊烯基和一个反式异戊烯基的多异戊烯基呫吨酮。尽管已经鉴定出负责顺式异戊烯基化的异戊烯基转移酶,但最终的反式异戊烯基化反应仍不清楚。到目前为止,尚未描述催化芳香族碳反式异戊烯基化的植物酶。在这里,我们利用贯叶连翘和元宝草的代谢谱和转录组信息来鉴定参与反式异戊烯基化呫吨酮形成的同源酶,并使用体外、体内和计算机模拟方法来表征它们的功能。鉴定出的酶是非典型的UbiA类异戊烯基转移酶,令人惊讶的是,它们以不同的区域选择性催化顺式和反式异戊烯基化反应。在酿酒酵母和本氏烟草中重建酶级联反应证实反式异戊烯基化的金丝桃酮A是主要产物。定点诱变支持的分子建模和对接模拟表明存在两种不同的结合模式,这使得顺式和反式异戊烯基化成为可能,并为反式异戊烯基转移反应的优先催化提供了理论依据。反式异戊烯基化的鉴定增加了膜结合UbiA类植物芳香族异戊烯基转移酶催化的反应种类。这些见解还为具有药学价值的天然产物的生物技术修饰提供了一种新工具。