Suppr超能文献

通过具有纵向液体活检数据的动态感知模型预测胃癌患者的反应。

Predicting response to patients with gastric cancer via a dynamic-aware model with longitudinal liquid biopsy data.

作者信息

Chen Zifan, Zhao Jie, Li Yanyan, Feng Xujiao, Chen Yang, Li Yilin, Nan Xinyu, Liu Huimin, Dong Bin, Shen Lin, Zhang Li

机构信息

Center for Data Science, Peking University, Haidian District, Beijing, 100080, China.

National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China.

出版信息

Gastric Cancer. 2025 Jun 17. doi: 10.1007/s10120-025-01628-4.

Abstract

BACKGROUND

Gastric cancer (GC) presents challenges in predicting treatment responses due to its patient-specific heterogeneity. Recently, liquid biopsies have emerged as a valuable data modality, offering essential cellular and molecular insights while facilitating the capture of time-sensitive information. This study aimed to leverage artificial intelligence (AI) technology to analyze longitudinal liquid biopsy data.

METHODS

We collected a dataset from longitudinal liquid biopsies of 91 patients at Peking Cancer Hospital, spanning from July 2019 to April 2022. This dataset included 1895 tumor-related cellular images and 1698 tumor marker indices. Subsequently, we introduced the Dynamic-Aware Model (DAM) to predict responses to GC treatment. DAM incorporates dynamic data through AI-engineered components, facilitating an in-depth longitudinal analysis.

RESULTS

Utilizing threefold cross-validation, DAM exhibited superior performance compared to traditional cell-counting methods, achieving an AUC of 0.807 in predicting GC treatment responses. In the test set, DAM maintained stable efficacy with an AUC of 0.802. Besides, DAM showed the capability to accurately predict treatment responses based on early treatment data. Moreover, DAM's visual analysis of attention mechanisms identified six dynamic visual features related to focus areas, which were strongly associated with treatment-response.

CONCLUSIONS

These findings represent a pioneering effort in applying AI technology to interpret longitudinal liquid biopsy data and employ visual analytics in GC. This approach provides a promising pathway toward precise response prediction and personalized treatment strategies for patients with GC.

摘要

背景

由于胃癌(GC)存在患者特异性异质性,在预测治疗反应方面面临挑战。近年来,液体活检已成为一种有价值的数据模式,它能提供重要的细胞和分子见解,同时有助于获取对时间敏感的信息。本研究旨在利用人工智能(AI)技术分析纵向液体活检数据。

方法

我们收集了北京大学肿瘤医院91例患者从2019年7月至2022年4月的纵向液体活检数据集。该数据集包括1895张肿瘤相关细胞图像和1698个肿瘤标志物指标。随后,我们引入了动态感知模型(DAM)来预测GC治疗反应。DAM通过人工智能设计的组件整合动态数据,便于进行深入的纵向分析。

结果

利用三倍交叉验证,DAM在预测GC治疗反应方面表现优于传统细胞计数方法,在预测GC治疗反应时AUC达到0.807。在测试集中,DAM的疗效保持稳定,AUC为0.802。此外,DAM显示出能够根据早期治疗数据准确预测治疗反应的能力。此外,DAM对注意力机制的可视化分析确定了六个与重点区域相关的动态视觉特征,这些特征与治疗反应密切相关。

结论

这些发现代表了将人工智能技术应用于解释纵向液体活检数据并在GC中采用视觉分析的开创性努力。这种方法为GC患者的精确反应预测和个性化治疗策略提供了一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验