Bulle Mallesham, Rahman Md Mezanur, Islam Md Robyul, Abbagani Sadanandam
Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, 506 009, India.
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
Planta. 2025 Jun 17;262(2):30. doi: 10.1007/s00425-025-04747-5.
Chili peppers (Capsicum spp.), a globally significant crop revered for their nutritional, economic, and cultural importance, are increasingly imperiled by the converging burdens of climate-induced abiotic stresses, including drought, heat, and salinity, and relentless biotic assaults from pathogens and insect herbivores. These overlapping stressors not only destabilize yield but also compromise the metabolic intricacy responsible for the accumulation of health-promoting secondary metabolites. Although Capsicum exhibits remarkable genetic and phytochemical diversity, the integrated transcriptional, metabolic, and epigenetic frameworks that underpin its stress resilience remain poorly delineated. This review synthesizes recent advances in decoding core transcription factor families, such as CaNAC, CaWRKY, and CaMYB, that serve as pivotal regulators of osmotic adjustment, reactive oxygen species detoxification, hormonal crosstalk, and secondary metabolite biosynthesis under stress conditions. We further highlight how multi-omics-guided gene discovery, when paired with CRISPR/Cas-mediated genome editing, enables precise reprogramming of key regulatory loci to enhance adaptive responses. Emerging innovations, including base editing, prime editing, and novel nucleases like Cas12a and Cas13d, are expanding the functional genome-editing landscape, while the integration of morphogenic regulators and genotype-independent transformation platforms is beginning to circumvent long-standing obstacles in Capsicum genetic engineering. Lastly, we propose a transformative framework that converges transcription factor modulation, multi-omics strategies, precision phenotyping, and next-generation genome editing to accelerate the development of climate-resilient Capsicum cultivars with optimized metabolic traits. This strategic convergence of molecular insight and biotechnological innovation offers a robust foundation for building next-generation chili pepper varieties capable of withstanding intensifying environmental and pathogenic pressures, ultimately safeguarding yield, nutritional quality, and agricultural sustainability in the face of global climate change.
辣椒(辣椒属)是一种在全球具有重要意义的作物,因其营养、经济和文化价值而备受推崇,但它正日益受到气候诱导的非生物胁迫(包括干旱、高温和盐渍化)以及病原体和昆虫食草动物无情的生物攻击等多重负担的威胁。这些重叠的胁迫因素不仅会破坏产量,还会损害负责积累促进健康的次生代谢产物的代谢复杂性。尽管辣椒表现出显著的遗传和植物化学多样性,但支撑其胁迫抗性的综合转录、代谢和表观遗传框架仍未得到很好的描述。本综述综合了在解码核心转录因子家族(如CaNAC、CaWRKY和CaMYB)方面的最新进展,这些家族在胁迫条件下作为渗透调节、活性氧解毒、激素相互作用和次生代谢产物生物合成的关键调节因子。我们进一步强调了多组学指导的基因发现与CRISPR/Cas介导的基因组编辑相结合,如何能够对关键调控位点进行精确重编程,以增强适应性反应。包括碱基编辑、引导编辑以及Cas12a和Cas13d等新型核酸酶在内的新兴创新正在扩展功能性基因组编辑的领域,而形态发生调节因子和基因型无关的转化平台的整合开始克服辣椒基因工程中长期存在的障碍。最后,我们提出了一个变革性框架,该框架融合了转录因子调控、多组学策略、精准表型分析和下一代基因组编辑,以加速具有优化代谢特性的气候适应型辣椒品种的开发。这种分子洞察力和生物技术创新的战略融合为培育能够抵御日益加剧的环境和致病压力的下一代辣椒品种提供了坚实基础,最终在全球气候变化面前保障产量、营养质量和农业可持续性。