Sun Ping, Xu Yang, Xiong Tianqing, Li Shun, Qiu Na, Zhou Chao, Wang Jiefei, Chang Alexander, Chandran Uma R, Yin Ke-Jie
Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
Angiogenesis. 2025 Jun 17;28(3):35. doi: 10.1007/s10456-025-09987-3.
Stroke is a leading cause of mortality and disability globally. Despite advancements in acute stroke therapies, patient outcomes with ischemic stroke remain suboptimal. Understanding its molecular mechanisms is crucial for developing effective treatments. Angiogenesis actively contributes to post-stroke functional recovery and improves long-term survival in stroke patients. Pericytes are essential for maintaining vascular stability and promoting angiogenesis. We hypothesized that microRNA-15a/16-1 in pericytes significantly modulates post-stroke angiogenesis and neurological recovery. Using a pericyte-specific miR-15a/16-1 conditional knockout (cKO) mouse model, we found that genetic deletion of miR-15a/16-1 in pericytes enhances angiogenesis, promotes cerebral blood flow recovery, and improves sensorimotor and cognitive outcomes following ischemic stroke. Mechanistically, RNA sequencing identified several novel targets of miR-15a/16-1, including Pappa2, Fgf9, Islr, and Ccr2. Interestingly, Pappa2, Fgf9, and Islr function as secreted proteins. Luciferase reporter assays demonstrated that miR-15a/16-1 directly binds and suppresses Pappa2, Fgf9, Islr, and Ccr2 activity in cultured pericytes. In vivo and in vitro assays further confirmed that miR-15a/16-1 silencing in pericytes significantly elevates the protein levels of Pappa2, Fgf9, Islr, and Ccr2 and enhances endothelial cell proliferation, migration, and tube formation under ischemic conditions. These findings suggest that targeting miR-15a/16-1 in pericytes offers a promising therapeutic strategy for enhancing stroke recovery by promoting neurovascular repair and reducing brain damage.
中风是全球死亡和残疾的主要原因。尽管急性中风治疗取得了进展,但缺血性中风患者的预后仍然不理想。了解其分子机制对于开发有效的治疗方法至关重要。血管生成积极促进中风后的功能恢复,并改善中风患者的长期生存率。周细胞对于维持血管稳定性和促进血管生成至关重要。我们假设周细胞中的微小RNA-15a/16-1显著调节中风后的血管生成和神经恢复。使用周细胞特异性miR-15a/16-1条件性敲除(cKO)小鼠模型,我们发现周细胞中miR-15a/16-1的基因缺失增强了血管生成,促进了脑血流恢复,并改善了缺血性中风后的感觉运动和认知结果。机制上,RNA测序确定了miR-15a/16-1的几个新靶点,包括Pappa2、Fgf9、Islr和Ccr2。有趣的是,Pappa2、Fgf9和Islr作为分泌蛋白发挥作用。荧光素酶报告基因测定表明,miR-15a/16-1直接结合并抑制培养的周细胞中Pappa2、Fgf9、Islr和Ccr2的活性。体内和体外试验进一步证实,周细胞中miR-15a/16-1的沉默显著提高了Pappa2、Fgf9、Islr和Ccr2的蛋白质水平,并增强了缺血条件下内皮细胞的增殖、迁移和管形成。这些发现表明,靶向周细胞中的miR-15a/16-1为通过促进神经血管修复和减少脑损伤来增强中风恢复提供了一种有前景的治疗策略。