Lee Kanghwi, Lee Jong Hyuk, Koh Seok Young, Park Hyungin, Goo Jin Mo
Department of Radiology, Seoul National University Hospital, Seoul, Korea.
Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
Eur Radiol. 2025 Jun 17. doi: 10.1007/s00330-025-11714-x.
To investigate the value of deep learning-based quantitative CT (QCT) in predicting progressive fibrosing interstitial lung disease (PF-ILD) and assessing prognosis.
This single-center retrospective study included ILD patients with CT examinations between January 2015 and June 2021. Each ILD finding (ground-glass opacity (GGO), reticular opacity (RO), honeycombing) and fibrosis (sum of RO and honeycombing) was quantified from baseline and follow-up CTs. Logistic regression was performed to identify predictors of PF-ILD, defined as radiologic progression along with forced vital capacity (FVC) decline ≥ 5% predicted. Cox proportional hazard regression was used to assess mortality. The added value of incorporating QCT into FVC was evaluated using C-index.
Among 465 ILD patients (median age [IQR], 65 [58-71] years; 238 men), 148 had PF-ILD. After adjusting for clinico-radiological variables, baseline RO (OR: 1.096, 95% CI: 1.042, 1.152, p < 0.001) and fibrosis extent (OR: 1.035, 95% CI: 1.004, 1.067, p = 0.025) were PF-ILD predictors. Baseline RO (HR: 1.063, 95% CI: 1.013, 1.115, p = 0.013), honeycombing (HR: 1.074, 95% CI: 1.034, 1.116, p < 0.001), and fibrosis extent (HR: 1.067, 95% CI: 1.043, 1.093, p < 0.001) predicted poor prognosis. The Cox models combining baseline percent predicted FVC with QCT (each ILD finding, C-index: 0.714, 95% CI: 0.660, 0.764; fibrosis, C-index: 0.703, 95% CI: 0.649, 0.752; both p-values < 0.001) outperformed the model without QCT (C-index: 0.545, 95% CI: 0.500, 0.599).
Deep learning-based QCT for ILD findings is useful for predicting PF-ILD and its prognosis.
Question Does deep learning-based CT quantification of interstitial lung disease (ILD) findings have value in predicting progressive fibrosing ILD (PF-ILD) and improving prognostication? Findings Deep learning-based CT quantification of baseline reticular opacity and fibrosis predicted the development of PF-ILD. In addition, CT quantification demonstrated value in predicting all-cause mortality. Clinical relevance Deep learning-based CT quantification of ILD findings is useful for predicting PF-ILD and its prognosis. Identifying patients at high risk of PF-ILD through CT quantification enables closer monitoring and earlier treatment initiation, which may lead to improved clinical outcomes.
探讨基于深度学习的定量CT(QCT)在预测进行性纤维化间质性肺疾病(PF-ILD)及评估预后方面的价值。
这项单中心回顾性研究纳入了2015年1月至2021年6月期间接受CT检查的ILD患者。从基线和随访CT中对每个ILD表现(磨玻璃影(GGO)、网状影(RO)、蜂窝状影)及纤维化(RO与蜂窝状影之和)进行定量分析。采用逻辑回归确定PF-ILD的预测因素,PF-ILD定义为影像学进展且用力肺活量(FVC)下降≥预测值的5%。采用Cox比例风险回归评估死亡率。使用C指数评估将QCT纳入FVC的附加值。
在465例ILD患者(中位年龄[四分位间距],65[58 - 71]岁;238例男性)中,148例患有PF-ILD。在调整临床放射学变量后,基线RO(比值比:1.096,95%置信区间:1.042,1.152,p<0.001)和纤维化程度(比值比:1.035,95%置信区间:1.004,1.067,p = 0.025)是PF-ILD的预测因素。基线RO(风险比:1.063,95%置信区间:1.013,1.115,p = 0.013)、蜂窝状影(风险比:1.074,95%置信区间:1.034,1.116,p<0.001)和纤维化程度(风险比:1.067,95%置信区间:1.043,1.093,p<0.001)预测预后不良。将基线预测FVC百分比与QCT相结合的Cox模型(每个ILD表现,C指数:0.714,95%置信区间:0.660,0.764;纤维化,C指数:0.703,95%置信区间:0.649,0.752;p值均<0.001)优于未纳入QCT的模型(C指数:0.545,95%置信区间:0.500,0.599)。
基于深度学习的ILD表现QCT对预测PF-ILD及其预后有用。
问题基于深度学习的CT对间质性肺疾病(ILD)表现进行量化在预测进行性纤维化ILD(PF-ILD)及改善预后评估方面是否有价值?发现基于深度学习的CT对基线网状影和纤维化的量化可预测PF-ILD的发生。此外,CT量化在预测全因死亡率方面具有价值。临床意义基于深度学习的CT对ILD表现进行量化有助于预测PF-ILD及其预后。通过CT量化识别PF-ILD高风险患者可实现更密切监测并更早开始治疗,这可能改善临床结局。