Suppr超能文献

基于深度学习的 CT 纤维化程度可预测纤维性间质性肺病的结局,与视觉评估 CT 模式无关。

Deep Learning-based Fibrosis Extent on Computed Tomography Predicts Outcome of Fibrosing Interstitial Lung Disease Independent of Visually Assessed Computed Tomography Pattern.

机构信息

Department of Radiology, University of California, Los Angeles, Los Angeles, California.

Department of Radiology.

出版信息

Ann Am Thorac Soc. 2024 Feb;21(2):218-227. doi: 10.1513/AnnalsATS.202301-084OC.

Abstract

Radiologic pattern has been shown to predict survival in patients with fibrosing interstitial lung disease. The additional prognostic value of fibrosis extent by quantitative computed tomography (CT) is unknown. We hypothesized that fibrosis extent provides information beyond visually assessed CT pattern that is useful for outcome prediction. We performed a retrospective analysis of chest CT, demographics, longitudinal pulmonary function, and transplantation-free survival among participants in the Pulmonary Fibrosis Foundation Patient Registry. CT pattern was classified visually according to the 2018 usual interstitial pneumonia criteria. Extent of fibrosis was objectively quantified using data-driven textural analysis. We used Kaplan-Meier plots and Cox proportional hazards and linear mixed-effects models to evaluate the relationships between CT-derived metrics and outcomes. Visual assessment and quantitative analysis were performed on 979 enrollment CT scans. Linear mixed-effect modeling showed that greater baseline fibrosis extent was significantly associated with the annual rate of decline in forced vital capacity. In multivariable models that included CT pattern and fibrosis extent, quantitative fibrosis extent was strongly associated with transplantation-free survival independent of CT pattern (hazard ratio, 1.04; 95% confidence interval, 1.04-1.05;  < 0.001; C statistic = 0.73). The extent of lung fibrosis by quantitative CT is a strong predictor of physiologic progression and survival, independent of visually assessed CT pattern.

摘要

影像学表现已被证明可预测纤维性间质性肺疾病患者的生存率。定量计算机断层扫描(CT)评估的纤维化程度的额外预后价值尚不清楚。我们假设纤维化程度提供了超出视觉评估 CT 模式的信息,对预后预测有用。我们对肺纤维化基金会患者登记处参与者的胸部 CT、人口统计学资料、纵向肺功能和无移植生存率进行了回顾性分析。根据 2018 年常见间质性肺炎标准对 CT 模式进行了视觉分类。使用基于数据的纹理分析对纤维化程度进行了客观量化。我们使用 Kaplan-Meier 图和 Cox 比例风险和线性混合效应模型来评估 CT 衍生指标与结局之间的关系。对 979 份入组 CT 扫描进行了视觉评估和定量分析。线性混合效应模型显示,基线纤维化程度越大,用力肺活量的年下降率越高。在包括 CT 模式和纤维化程度的多变量模型中,定量纤维化程度与 CT 模式独立相关,与无移植生存率密切相关(风险比,1.04;95%置信区间,1.04-1.05;<0.001;C 统计量=0.73)。定量 CT 显示的肺纤维化程度是生理进展和生存的强有力预测指标,独立于视觉评估的 CT 模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验