Suppr超能文献

M3D:用于基于跨受试者和跨时段脑电图的情感识别中的非深度迁移学习的具有动态分布的基于流形的域适应

M3D: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition.

作者信息

Luo Ting, Zhang Jing, Qiu Yingwei, Zhang Li, Hu Yaohua, Yu Zhuliang, Liang Zhen

出版信息

IEEE J Biomed Health Inform. 2025 Jun 17;PP. doi: 10.1109/JBHI.2025.3580612.

Abstract

Emotion decoding using Electroencephalography (EEG)-based affective brain-computer interfaces (aBCIs) is crucial for affective computing but is hindered by EEG's non-stationarity, individual variability, and the high cost of large-scale labeled data. Deep learning-based approaches, while effective, require substantial computational resources and large datasets, limiting their practicality. To address these challenges, we propose Manifold-based Domain Adaptation with Dynamic Distribution (M3D), a lightweight non-deep transfer learning framework. M3D includes four main modules: manifold feature transformation, dynamic distribution alignment, classifier learning, and ensemble learning. The data undergoes a transformation onto an optimal Grassmann manifold space, enabling dynamic alignment of the source and target domains. This process prioritizes both marginal and conditional distributions according to their significance, ensuring enhanced adaptation efficiency across various types of data. In the classifier learning, the principle of structural risk minimization is integrated to develop robust classification models. This is complemented by dynamic distribution alignment, which refines the classifier iteratively. Additionally, the ensemble learning module aggregates the classifiers obtained at different stages of the optimization process, which leverages the diversity of the classifiers to enhance the overall prediction accuracy. The proposed M3D framework is evaluated on three benchmark EEG emotion recognition datasets using two validation protocols (cross-subject single-session and cross-subject cross-session), as well as on a clinical EEG dataset of Major Depressive Disorder (MDD). Experimental results demonstrate that M3D outperforms traditional non-deep learning methods, achieving an average improvement of 6.67%, while achieving deep learning-comparable performance with significantly lower data and computational requirements. These findings highlight the potential of M3D to enhance the practicality and applicability of aBCIs in real-world scenarios.

摘要

使用基于脑电图(EEG)的情感脑机接口(aBCI)进行情感解码对于情感计算至关重要,但受到EEG的非平稳性、个体变异性以及大规模标记数据的高成本的阻碍。基于深度学习的方法虽然有效,但需要大量计算资源和大型数据集,限制了它们的实用性。为了应对这些挑战,我们提出了基于流形的动态分布域适应(M3D),这是一个轻量级的非深度迁移学习框架。M3D包括四个主要模块:流形特征变换、动态分布对齐、分类器学习和集成学习。数据在最优格拉斯曼流形空间上进行变换,实现源域和目标域的动态对齐。这个过程根据边际分布和条件分布的重要性对它们进行优先排序,确保在各种类型的数据上提高适应效率。在分类器学习中,整合了结构风险最小化原则来开发鲁棒的分类模型。这由动态分布对齐补充,动态分布对齐迭代地优化分类器。此外,集成学习模块聚合在优化过程不同阶段获得的分类器,利用分类器的多样性提高整体预测准确性。所提出的M3D框架在三个基准EEG情感识别数据集上使用两种验证协议(跨主体单会话和跨主体跨会话)进行评估,以及在重度抑郁症(MDD)的临床EEG数据集上进行评估。实验结果表明,M3D优于传统的非深度学习方法,平均提高了6.67%,同时在显著更低的数据和计算要求下实现了与深度学习相当的性能。这些发现突出了M3D在增强aBCI在现实场景中的实用性和适用性方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验